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Introduction

Hidden Markov models (HMMs) and other latent variable models form complex, flexible

frameworks for univariate and multivariate data structures. A major advantage of la-

tent structures is the principle simplicity and the accessibility to practitioners and their

application-driven interpretations rather than black box systems. The statistical analysis

is not apparent as such models do not belong to standard parametric classes of indepen-

dent identical distributed (i.i.d.) random variables. Therefore, many statistical issues for

HMMs and related models are not implied by results of the standard literature, but have

been developed step by step by several authors in the last decades, among others Baum

and Petrie (1966), Leroux (1992b), Rydén (1994, 1995), Bickel et al. (1998, 2002), Douc

and Matias (2001), Gassiat and Keribin (2000), MacKay (2002), Douc et al. (2004), Poskitt

and Zhang (2005), Altman (2007). We describe the models and illustrate their importance

in various applications in Chapter 1. For a state of the art overview see Cappé et al. (2005).

This thesis is mainly concerned with three topics.

1. Testing for HMMs under nonstandard conditions, namely when the true parameter

lies on the boundary.

2. Testing for the number of states in HMMs and switching regression models, in par-

ticular

• testing for two states in an HMM, and

• testing for two components in switching regression models with independent or

Markov-dependent regime.

3. Modeling HMMs with flexible state-dependent distributions.

In practical applications of HMMs, non-standard testing problems are frequently encoun-

tered, e.g. testing for the probability of staying in a certain unobserved state being zero.
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2 Introduction

Such testing problems involving the boundary of the parameter space have achieved much

attention for i.i.d. data (e.g. Self and Liang, 1987) . In the first part of the thesis we

consider testing problems in HMMs

H : ϑ ∈ Θ0 against K : ϑ ∈ Θ \ Θ0,

when the true parameter ϑ0 lies on the boundary of Θ0 and possibly also of Θ. We derive

the relevant asymptotic distribution theory for the likelihood ratio test (LRT) in HMMs

under these conditions. Considering the prominent example of testing for a transition

probability being zero we derive for the LRT under the hypothesis

LRT
L→ 1

2
χ2

0 +
1

2
χ2

1

with χ2
k denoting the χ2-distribution with k degrees of freedom and χ2

0 denoting the point

mass at zero accordingly. Apart from this specific situation a number of examples with

particular relevance in the HMM framework are examined.

The specification of the number of states is very important in all models with discrete latent

variables and performing statistical testing of such hypotheses is one way to deal with this

problem. In the second part of the thesis we give an introduction to these specific testing

problems and discuss their non-standard nature. We present the work by Chen et al.

(2001) and Zhu and Zhang (2004), who develop methods for testing for homogeneity in

finite mixture models and switching regression models based on the asymptotic analysis

of a modified likelihood ratio test (MLRT). Chen et al. (2004) investigate testing for two

components in finite mixtures of one-parametric families. Following this approach we

propose a test for two states in HMMs, i.e.

H : m = 2 against K : m ≥ 3,

where m denotes the number of states. Testing for two states is of primary interest in

particular for HMMs, since a two-state HMM represents the smallest non-trivial mem-

ber of this model class. We show that the asymptotic distribution for the MLRT with

independence assumption under the hypothesis is given by

MLRT
L→ (1

2
− p

)
χ2

0 +
1

2
χ2

1 + p χ2
2,

depending on the mixing weight p, which may be replaced by an estimate for applications

of the MLRT. We make the surprising and novel observation that the dependency struc-

ture of the HMM does not influence the behavior of the MLRT. In addition, we extend
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the results by Chen et al. (2004) to switching regression models and propose a test for two

components in switching regression models with independent or Markov-dependent regime,

also called Markov-switching models. We verify the asymptotic distribution of the MLRT

under the hypothesis and discuss an application to a dental health trail data set, for which

the classical model selection criteria support different models.

The first two topics are concerned with testing problems within the classical parametric

framework, i.e. the distribution of the observations conditioned on the latent variables

belong to some parametric family. In the third part of the thesis we relax the paramet-

ric assumptions, aiming for more flexible models, which reduce systematic errors caused

by model misspecification and give rise to model validation techniques. We propose a

parametric as well as a semiparametric approach to this problem. In particular, the lat-

ter one introduces a new flavor to hidden Markov modeling by linking recently developed

semiparametric mixture models, introduced by Hall and Zhou (2003) and Bordes et al.

(2006a), to the HMM framework. Firstly, we show that their identifiability results for two-

component semiparametric mixtures transfer to two-state HMMs. Secondly, we propose

an estimation procedure to semiparametric HMMs based on the expectation-maximization

algorithm that enables extensions of estimation techniques in semiparametric mixtures to

HMMs, for example the methods suggested by Chang and Walther (2007) and Cule et al.

(2008) for mixtures with log-concave components.

This thesis is organized as follows. In Chapter 1 we introduce the latent variable models

that are mainly treated in this thesis, namely finite mixture models, HMMs and switching

regression models with independent and Markov-dependent regime. The following chapters

correspond each with one of the topics displayed above. For all three topics the analysis

includes simulation studies of the finite sample performance of the proposed techniques.

As partially mentioned above some illustrative applications from various fields, including

epileptic seizures, financial time series and a dental health trail, are presented.

Some results of this thesis have been presented at the GOCPS (Aachen, 2008), WCPS

(Singapore, 2008) and the Biometrisches Kolloquium (Hannover, 2009) and are published in

Dannemann and Holzmann (2008b, Scand. J. Statist.), Dannemann and Holzmann (2008c,

Canad. J. Statist.) and Dannemann and Holzmann (2010, Comput. Statist. Data Anal.).
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Chapter 1

Hidden Markov models and related

models

Hidden Markov models (German: verborgene Markow Modelle, French: modèle de Markov

caché) belong to the big class of latent variable models. Models with latent variables

have entered almost all fields of statistical applications. It is common for these models

that unobserved variables are introduced to model a complex data structure given by the

observables. In many applications these unobserved variables have a concrete theoretical

justification or are motivated by some desirable interpretation. In other cases, hidden

variables are used as a technical tool to build complex models.

In this chapter we present the type of models which are mainly treated in this thesis as

well as models closely related. These models have in common that the hidden variables

form a discrete time stochastic process on some finite set, e.g. {1, . . . ,m}. A very simple

model of this kind is the finite mixture model, which somehow serves as a nutshell model

for a whole bunch of models including hidden Markov models, switching regression models

and many others.

1.1 Finite mixture models

Finite mixture models are used extensively for describing populations with unobserved

heterogeneity. A number of monographs are available discussing all kinds of properties

which appeared in the literature, for example Titterington et al. (1985), Böhning (1999),

McLachlan and Peel (2000), Frühwirth-Schnatter (2006). More recent surveys of the topic

are given by Böhning et al. (2007) and Young (2008).

One of the oldest examples of a finite mixture model was introduced by Pearson (1894). He

5



6 Chapter 1. Hidden Markov models and related models

observed in the analysis of some data set that the normal distribution did not give a good

fit to the data. He deduced the presence of heterogeneity w.r.t. the normal distribution and

claimed that each observation belongs to one of two populations, where the distribution

within each population follows a normal distribution.

Denoting the observations by Yi and the membership to one of the populations by Ui

this formalizes to P (Yi ≤ y|Ui = 0) = Fμ1,σ2
1
(y), P (Yi ≤ y|Ui = 1) = Fμ2,σ2

2
(y) and

P (Ui = 0) = 1 − P (Ui = 1) = π1, where Fμ,σ2 denotes a normal distribution with mean

μ and variance σ2. Assuming that (Ui)i and (Yi)i are two independent sequences (but

not independent of each other) leads to a univariate two component mixture model of two

normal distributions with distribution function:

G(y) = P (Yi ≤ y) = P (Ui = 0)P (Yi ≤ y|Ui = 0) + P (Ui = 1)P (Yi ≤ y|Ui = 1)

= π1Fμ1,σ2
1
(y) + (1 − π1)Fμ2,σ2

2
(y)

with parameters (π1, μ1, σ
2
1, μ2, σ

2
2). In general, an m-component finite mixture distribution

is given by

G(y) = π1F1(y) + . . .+ πmFm(y), (1.1)

where πk ≥ 0,
∑m

k=1 πk = 1 and Fk specifies the distribution of the kth component. As in

the example above the latent variable here represents the unobservable membership to one

of the components standing for each of the populations and (1.1) arises from

G(y) = P (Yi ≤ y) = P (Ui = 1)P (Yi ≤ y|Ui = 1) + . . .+ P (Ui = m)P (Yi ≤ y|Ui = m),

where Ui ∼ Mult(π) are i.i.d. multinomial distributed r.v. on {1, . . . ,m}. Usually one

assumes that the distributions P (Yi ≤ y|Ui = k) = Fk(y) = Fθk
(y) belong to some

parametric family, such that the parameter of interest of an m-component finite mixture

model is ϑ = (π1, . . . , πm, θ1, . . . , θm).

Example 1.1. Let εi ∼ N (0, 1) and Ui ∼ Mult(π) i.i.d., and (μ1, σ
2
1), . . . , (μm, σ

2
m) ∈

R × R
+ pairwise distinct, then

Yi = μUi
+ σUi

εi

follows an m-component Gaussian mixture with parameter (π1, . . . , πm, μ1, σ
2
1, . . . , μm, σ

2
m).

For the statistical analysis of finite mixture models identifiability as well as estimation

procedures and their computational feasibility are crucial.
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Identifiability of finite mixture models

Identifiability means that in principle the true parameter is uniquely determined by the

probability law of the observations, i.e.

P
(Yi)
ϑ = P

(Yi)
ϑ0

=⇒ ϑ = ϑ0.

As ϑ0 is unknown one should require this property for all ϑ ∈ Θ. In many statistical

models this is just a question of choosing an appropriate parametrization of the considered

model. In the context of finite mixture models identifiability is by far not an obvious

issue. One reason for this is that an m-component finite mixture can be represented as

a (m + 1)-component mixture in various ways (either by putting one of the weights to

zero or choosing two distributions of the components as equal). Hence, to achieve the

identifiability of a particular parametrization for finite mixture models it is a necessary

condition that the number of components m is known, i.e. for a m-component mixture

πk1 > 0 and Fk1 �= Fk2 for 1 ≤ k1, k2 ≤ m.

For classical finite mixture models, where Fks belong to some parametric family, identi-

fiability of finite mixtures is established for most common families. The following finite

mixtures are identifiable: finite mixtures of Poisson distributions (Feller, 1943), finite mix-

tures of univariate normal and gamma distributions (Teicher, 1963) and finite mixtures of

multivariate normal distributions (Yakowitz and Spragins, 1968). A general helpful charac-

terization of identifiability of finite mixtures is also given by Yakowitz and Spragins (1968),

who proved that the class of finite mixtures of distributions is identifiable if and only if the

underlying parametric family is linearly independent over the field of real numbers.

However, the fact, that identifiability is not trivial, is also illustrated by a number of exam-

ples of non-identifiable mixtures. These examples usually make use of a linear relationship

between y and F (y) to construct linearly dependent distributions and are often based on

uniform distributions (see Everitt and Hand, 1981) or triangular distributions (see Holz-

mann, Munk and Gneiting, 2006a, Ex. 6). Also the n-binomial distribution finite mixtures

are not identifiable, if n < 2m− 1 (Teicher, 1963).

Another phenomenon concerning identifiability is the so called label-switching, i.e. the

states of the latent process can be permuted without changing the law of the observed

model. Standard approaches to overcome the problem are changing the nomenclature to

equivalence classes w.r.t. label-switching (Leroux, 1992b) or imposing ordering constraints

of the parameters of the distributions of the components, e.g. θ1 > . . . > θm. While the

consideration of equivalence classes is not very comfortable from a practical view point,

ordering constraints seem to be an easy way out. However, as pointed out by Frühwirth-
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Schnatter (2006) such constraints may not be desirable in some applications and may

influence statistical inference especially if the distributions of two components are close.

Estimation in finite mixture models

Based on an i.i.d. sample (Yi)i from a finite mixture the parameter of interest

ϑ = (π1, . . . , πm, θ1, . . . , θm)

can be estimated by different methods. Classical approaches are method of moments,

maximum likelihood estimation as well as Bayes estimation (Frühwirth-Schnatter, 2006,

for a summary cf.). All of them have different advantages and disadvantages. For the

maximum likelihood estimator (MLE) we consider the log-likelihood function

L(m)
n (ϑ) = L(m)(ϑ;Y1, . . . , Yn) =

n∑
i=1

log
m∑
k=1

πkfθk
(Yi), (1.2)

where fθk
(·) denotes the density corresponding to the conditional distribution Fθk

(·). The

MLE is then defined as the maximizer of the log-likelihood, ϑ̂ := arg maxϑ L
(m)
n (ϑ). In

contrast to other statistical models, namely exponential families, typically the MLE can-

not be calculated explicitly. There are different techniques proposed in the literature to

evaluate the MLE. Besides direct maximization techniques based on Newton’s method,

the expectation- maximization (EM) algorithm introduced by Dempster et al. (1977) is

very popular among statisticians. It is designed for models with incomplete information

and extensions are often straight forward to implement. However, in general the speed

of the EM algorithm is comparably low. The methodology of the EM algorithm will be

discussed in some detail in Section 4.2.2. Since finite mixture models are i.i.d. models, the

usual asymptotic theory applies, i.e. that under the usual regularity conditions the MLE

is consistent and centered asymptotic normal with covariance matrix given by the inverse

of the Fisher-information-matrix (cf. Frühwirth-Schnatter, 2006, p.52).

1.2 Hidden Markov models

Hidden Markov models (HMMs) generalize the idea of finite mixture models. They model

the hidden variable Ui, which is just an i.i.d. multinomial r.v. for finite mixture models, as

a Markov chain. This tiny extension yields a surprisingly rich class of non linear processes

(Frühwirth-Schnatter, 2006). The main advantage is that these models can incorporate the

dependency structure of the data, which occur in various fields, for example for financial
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or other time series or biological sequence analysis. HMMs provide a flexible and widely

used class of models for dependent data, in particular in the presence of overdispersion (for

series of count data) or unobserved heterogeneity.

In the first place HMMs were applied in speech recognition and the famous paper by

Rabiner (1989) is with 3463 citations (source: ISI Web of KnowledgeSM, 29.04.09) by far

still the most cited paper in the context of HMMs. Other important applications can be

found in computational and molecular biology, especially in biological sequence alignment

(Durbin et al., 1999) as well as ion channel applications (De Gunst, Künsch and Schouten,

2001). Moreover, applications can be found in econometrics (Rydén et al., 1998), medical

statistics (Altman, 2007), biology (Holzmann et al., 2006b) and computer science (Dainotti

et al., 2008). For a comprehensive summary see MacDonald and Zucchini (1997) and Cappé

et al. (2005).

The ISI Web of KnowledgeSMdatabase demonstrates that HMMs are still a field of lively

research, as the Figures 1.1 and 1.2 highlight. They display the distribution of 4886

publications whose topic contains the phrase ”hidden Markov” over the years and their

citations (in total 82.970).

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

0
10

0
20

0
30

0
40

0
50

0

Figure 1.1: Published items in each year.

(Source: ISI Web of KnowledgeSM, 29.04.09)

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

0
50

00
10

00
0

15
00

0

Figure 1.2: Citations in each year.

(Source: ISI Web of KnowledgeSM, 29.04.09)

As already indicated an HMM can be seen as a finite mixture, where the unobserved switch

is not independent but a Markov chain with finite-state space. Therefore, HMMs may be

interpreted as an extension of finite mixture, but they can also be seen as Markov chains

observed in noise (Cappé et al., 2005). As probabilistic functions of Markov chains HMMs
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were studied for the first time by Baum and Petrie (1966), who considered HMMs with

finite state space and finite sample space.

Formally, HMMs consist of two ingredients, an unobservable finite-state Markov chain (Ui)

and an observable stochastic process (Yi), such that

1. the (Yi) are conditionally independent, given the (Ui) and

2. given the (Ui), the distribution of Yj depends on Uj only.

This dependency structure can be represented by an undirected graph, where the missing

edges between two nodes represent the conditional independence of two r.v.s conditioned

on the rest. From the decomposition

P (U1 = u1, Y1 = y1, U2 = u2, Y2 = y2, . . .)

= P (U1 = u1)P (Y1 = y1|U1 = u1)P (U2 = u2|U1 = u1)P (Y2 = y2|U2 = u2) · · ·

we may also represent the dependency structure by an directed graph (see Figure 1.3).

U1 U2 U3

Y1 Y2 Y3

Figure 1.3: Dependency structure of an HMM.

The unobserved process (Ui) is sometimes called regime. As realizations of finite Markov

chains are called states, the conditional distribution functions P (Yi ≤ y|Ui = k) for k =

1, . . . ,m are called state-dependent distribution functions (sdfs). Usually the sdfs come from

a parametric family (Fθ)θ∈Θ of distributions, e.g. the normal or the Poisson distribution.

In this case the parameter of interest of the model consists of the transition matrix of the

Markov chain P and the parameters of the sdfs.

Note that every finite mixture model can be expressed as an HMM just by choosing the

transition matrix of the Markov chain to have identical columns, i.e. transition probabilities
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do not depend on the state one starts with. Hence, independence can be expressed by

a number of equalities on the transition probabilities and can be easily tested via the

likelihood ratio procedure, if one assumes the number of states m to be fixed.

Identifiability and estimation in HMMs

As for finite mixtures identifiability is an important issue in the HMM framework. Petrie

(1969) gives an identifiability result for HMMs with finite sample space, e.g. Yi ∈ {1, . . . , N}
for some N ∈ N. For standard HMMs, i.e. with sdfs from the same parametric family,

Leroux (1992b) shows how an argument by Teicher (1967) can be used to establish identi-

fiability if it is assumed to hold for the corresponding finite mixture. Teicher (1967) shows

that finite mixtures of product distributions F ∗(y) = F1(y1) · · ·Fr(yr) from some family F

are identifiable if and only if finite mixtures of F are identifiable. It turns out that this

result with r = 2 implies identifiability in the HMM framework, as long as it holds for

finite mixtures. Hence, HMMs with Gaussian, gamma, Poisson or other classical distribu-

tions as sdfs are identifiable. Note, that for HMMs with n-binomial sdfs with n < 2m− 1

Leroux’s argument cannot be applied, since the corresponding mixture is not identifiable.

However, Petrie (1969) shows identifiability for HMMs with observations in {0, . . . , N} for

the parameter space Θ \ ΘPetrie with

Θ = {(P, F1, . . . , Fm)|P ergodic transition matrix, Fk distributions on {0, . . . , N}}

and ΘPetrie ⊂ Θ is a null set w.r.t. the Lebesgue measure on Θ ⊂ R
m(N+m−1). Since

{ϑ ∈ Θ|Pij does not depend on i for all j} ⊂ ΘPetrie this result does not contradict Te-

icher’s results on mixtures of binomials. Note that this model is discussed in Ex. 2.2

motivated by MacDonald and Zucchini (1997, pp. 140–144). Some discussion on identifia-

bility as well as treatment of the illustrating example of Gaussian HMMs can be found in

Cappé et al. (2005).

There are several estimation techniques proposed in the literature to infer the parameter

of interest, i.e. the transition matrix of the chain and the parameters of the sdfs. As for

mixtures methods based on maximum likelihood and Bayesian analysis are well elaborated.

However, all techniques as well as theoretical analysis are more involved than for finite

mixtures. In this thesis we consider maximum likelihood estimation, for detailed discussions

of Bayesian methods usual based on MCMC sampling techniques see Frühwirth-Schnatter

(2006, Chp. 11.5) and Cappé et al. (2005, Chp. 13). Evaluation of the MLE is much more

complicated for HMMs than for mixture models, as the likelihood function is not simply

a product as in the independent case. However, it turns out that it can be represented
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as a product of matrices, such that computation speed increases only linearly in sample

size, not exponentially as one may think of in the first place. For this computation forward

and backward algorithms are proposed and commonly used (see for example MacDonald

and Zucchini, 1997). These algorithms are the building block of many techniques and

are closely connected to filtering problems, e.g. the Viteribi algorithm computes the most

likely sequence of hidden states given the observations. For a profound discussion see also

Cappé et al. (2005, Chp. 10). Further discussion of the MLE of HMMs we defer to Chapter

2, especially to Section 2.3.1 for its numerical evaluation.

1.3 Switching regression models

Switching regression models (SRMs), also called mixture regression model, are another

extension of finite mixture models. They arise if in addition to population heterogeneity

covariates should be taken into account. For a Gaussian response, i.e. linear switching re-

gression, these were introduced by Quandt and Ramsey (1978) and Kiefer (1978). Further,

switching regression models are also extensively used for count data, in particular Poisson

switching regression as e.g. in Le et al. (1992), Wang and Puterman (2001, 1999), or for

binary responses, i.e. switching logistic regression as e.g. in Wang and Puterman (1998).

These models allow to incorporate overdispersion relative to the corresponding generalized

linear model and can often be nicely interpreted.

We denote the observations by (Yi, Xi), where Yi is the response variable and Xi the

(multidimensional) covariate, and the latent variable by Ui. The conditional distributions

are given by P (Yi ≤ y|Xi = xi, Ui = k) = Fk(y|x). Usually Fk(y|x) belongs to some

parametric family, i.e. Fk(y|x) = Fβ,θk
(y|x), where θ is the switching parameter while β

coincides in all components. If the Uis are i.i.d. copies following an multinomial distribution

on {1, . . . ,m} with weights π the density of the observation (Yi, Xi) is given by

fswitch(yi, xi) = (π1f(yi, xi; β, θ1) + . . .+ πmf(yi, xi; β, θm))h(xi), (1.3)

where f(yi, xi; β, θk) denotes the density of the conditional distribution Fβ,θk
(yi|xi) and

h(xi) the density of the covariates.

The form of (1.3) indicates a close connection between switching regression models and

mixture models with structural parameters, for example a normal mixture with distinct

means, but equal variances in the components (Chen and Chen, 2003).

We may also connect the switching regression framework to HMMs by considering a switch-

ing regression model, where the switching regime Ui follows a Markov chain and the de-

pendency conditions 1. and 2. in Section 1.2 hold for (Yi, Xi)i. Such a model is called
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Markov-switching regression model (MSRM) and can either be seen as an extension of

the switching regression model, by allowing for a Markovian regime, or as an extension of

HMMs by embedding covariates into HMMs. The dependency structure of an SRM and

an MSRM is displayed in Figure 1.4.

U1 U2 U3

Y1 Y2 Y3

X1 X2 X3

Figure 1.4: Dependency structure of an SRM (without dashed lines) and an MSRM (with

dashed lines).

The issue of identifiability essential transfers from mixtures to switching regression models.

For example a binomial regression model is only identifiable if n ≥ 2m − 1. Additional

difficulties occur if the design matrix formed by the Xis does not allow identifiability of the

parameters. An interesting example of which is given for the linear regression by Hennig

(2000), for a discussion see also Frühwirth-Schnatter (2006, Chp. 8.2.2.).

For estimation techniques based on Bayesian analysis via MCMC algorithms we again refer

to Frühwirth-Schnatter (2006, Chp. 8.3.4.). Maximum likelihood estimation is discussed

in Section 3.3.

1.4 Other related models

General mixture models and general state-space models

A class closely related to finite mixture models is the class of general mixtures, which

will not be discussed further in this thesis but should be mentioned. Assume that H is

a probability measure on the parameter space Θ and we associate with each θ ∈ Θ a

distribution function Fθ, then the equation (1.1) translates to

G(y) =

∫
Θ

Fθ(y)H(dθ).
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Inference concerning H based on G is a special case of a statistical inverse problem. Note

that, if H is discrete with m support points G represents a finite mixture with m compo-

nents.

General state-space models extend HMMs in the similar way by replacing the hidden

Markov chain with finite state space by a general Markov process on a parameter space Θ

with Markov transition kernel Q. As these models are not in the main focus of the thesis

we refer to Cappé et al. (2005) for precise definitions and notations.

A prominent class of these models are Gaussian linear state-space models where the con-

ditional distribution functions are Gaussian, e.g.

Ui = Ui−1 + ε1i and Yi = Ui + ε2i

with U1, ε1i, ε2i are independent zero-mean and homogeneous variance normal r.v.s.

Cappé et al. (2005) treat HMMs with finite state space and general state-space models in

their book simultaneously. Their analysis is therefore quite general and applicable to a

wide range of models, but of course notionally and technically more involved. Cappé et al.

(2005) do not distinguish between HMMs with finite state space and general state-space

models conceptually. In contrast to that MacDonald and Zucchini (1997) reserve the term

HMM to models with finite state space.

Hidden semi-Markov models

Hidden semi-Markov models extend HMMs in another way. Here the assumption of the

Markov property is somehow weakened. The Markov chain is replaced by a semi-Markov

chain, which is loosely speaking a Markov chain with arbitrarily specified sojourn time, i.e.

the probability of staying in some state over a period of i steps does not necessarily decrease

exponentially in i as for Markov chains. Hidden semi-Markov models are therefore enabled

to incorporate longer memory into a model. For the application of financial time series

models, e.g. stock prices, this is of special interest as ”long memory effects” are assumed

to be present in this kind of data. The statistical properties of hidden semi-Markov models

are investigated by Barbu and Limnios (2006). Applications to Financial Time Series are

extensively discussed in Bulla (2006).

Switching autoregression and other models with feedback

So far, all presented models have in common that conditioned on the hidden process the

observations are independent. This implies that no feedback between the observations is
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possible. Examples for models that incorporate feedback in this context are switching

and Markov-switching autoregression models (Douc et al., 2004) and latent state models

with feedback (Zucchini et al., 2008). While the latter model has been applied to animal

behavior, Markov-switching autoregression models are mainly discussed in econometrics

literature (for an overview see Piger, 2009), however the kind of feedback in the two models

differs conceptually.

1.5 Notation and standing assumptions

The latent process

Let us start with the latent process (Ui)i∈I , usually with I = {1, . . . , n} for the sample size

n ∈ N. We assume that (Ui) is a stochastic process with values in {1, . . . ,m} either simply

i.i.d. in case of finite mixture models and switching regression models or for HMMs and

Markov switching regression models a Markov chain with transition probabilities α
(i)
jk :=

P (Ui+1 = k|Ui = j) and initial distribution π∗
k = P (U1 = k) for 1 ≤ j, k ≤ m. Throughout

the thesis we assume that the Markov chain (Ui) is homogeneous, i.e. the transition

probabilities coincide for all i and form a transition matrix P = (αjk)jk . Moreover, we

assume that Markov chain (Ui) is irreducible and aperiodic. This condition ensures that

(Ui) is an ergodic process with a unique stationary distribution π = (π1, . . . , πm) with

πk > 0 for all 1 ≤ k ≤ m. We usually assume that the initial distribution π∗ coincides with

π which yields together with the homogeneity assumption the stationarity of the process

(Ui). If (Ui) is i.i.d. π denotes the distribution on {1, . . . ,m} which coincides with the

interpretation of the i.i.d. process as a Markov chain with transitions αjk being equal for

all j. In this case ergodicity is simply ensured if πk > 0 for all k. We see that ergodicity

guarantees that the number of states or components m is a well-defined number.

The observed process

We assume that the observed process (Yi) takes values in a Borel measurable subset Y ⊂ R
d

of a Euclidean space. For all models, namely those discussed in Sections 1.1, 1.2, 1.3, the

crucial properties are that the (Yi) are independent conditioned on the latent process (Ui)

and the distribution of Yj depends on (Ui)i only through the corresponding Uj

P (Yj ≤ y|U1, . . . , Un, Y1, . . . , Yj−1, Yj+1, . . . , Yn) = P (Yj ≤ y|Uj) =: FUj
(y).
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We assume that the FUj
s are also homogeneous, i.e. equal for all j, and for Uj = k have

densities fk for 1 ≤ k ≤ m w.r.t. some σ-finite measure ν on Y . Usually the fk = fθk

belongs to some parametric family of densities {fθ(y)|θ ∈ Θ} with Θ ⊂ R
p. For exam-

ple {f(y; (μ, σ2)) = 1/(2πσ) exp(−(y − μ)2/2σ2)|(μ, σ2) ∈ R × R>0} gives rise to Gaussian

mixtures and HMMs. For count data the Poisson family {f(y;λ) = λy/y! exp(−λ)|λ ∈ R>0}
is commonly used (e.g. by Le et al., 1992).

In case of parametric HMMs for notational convenience we may view (Ui) as a process on

a finite set {θ1, . . . , θm} ⊂ Θ ⊂ R
d with θj �= θk for 1 ≤ j < k ≤ m. Here we may denote

the stationary distribution of (Ui) on Θ as G ∈ Mm the set of probability measures on Θ

with m support points.

Additional notation for the regression models

In addition to the processes introduced above we assume the presence of covariates (Xi)i∈I

with values in a Borel-measurable subset X ⊂ R
r. Although the previous notion for the

distribution of Yi conditioned on Ui might be still valid (by integrating over the covariates)

we prefer to change the notation slightly by considering the conditional distribution of

Yi|Xi = xi, Ui = k

Fk(yi|xi) := P (Yi ≤ yi|Xi = xi, Ui = k)

and the distribution of Xi given by FX on X with density h w.r.t. some σ-finite measure

on X . We assume that the (Yi, Xi) are independent for the switching regression model or

independent conditioned on (Ui)i for the Markov switching regression model. Moreover, the

distributions of (Yi, Xi) conditioned on Ui = k possess densities w.r.t. a σ-finite measure

on Y × X of the form

fk(yi, xi)h(xi) = f(yi, xi; β, θk)h(xi)

from some parametric family {f(y, x; β, θ)|β ∈ B, θ ∈ Θ} where we distinguish between the

switching parameter θ ∈ Θ ⊂ R
p and the structural parameter β ∈ B ⊂ R

q which is equal

in all components. We again assume that the model is homogeneous, i.e. the densities are

the same for all i. This setting excludes the longitudinal setup based on ni measurements

per observation unit which is of major relevance in the regression context (cf. Zhu and

Zhang, 2004). We will indicate how the switching regression model defined above can be

adopted to longitudinal data structures in Remark 3.9 in Section 3.3.2.



Chapter 2

Testing in hidden Markov models

under nonstandard conditions

In this chapter we introduce maximum likelihood estimation and hypothesis testing based

on the likelihood ratio in the context of HMMs. The main focus is to investigate the

asymptotic behavior of the maximum likelihood estimator (MLE) and the likelihood ratio

test (LRT) under so-called nonstandard conditions. In these cases usually the asymptotic

normal or χ2-distribution does not hold. This occurs for example if the true value lies on

the boundary of the parameter space.

Before formally introducing these concepts we may begin with a motivating example rep-

resenting some relevant testing problem where crucial boundary constraints are present.

A first example

We want to investigate whether a hidden state k is always left immediately, i.e. the (k, k)th

entry of the transition matrix is zero:

αkk := P (Ui+1 = k|Ui = k) = 0.

Clearly, αkk lies in [0, 1], such that this problem is concerned with the boundary of the

parameter space.

As HMMs can either be seen as a noisy version of a Markov chain or as a mixture with not

i.i.d. but Markovian regime we may watch out for analogous situations in both directions.

Let us for a moment assume that (Ui)i is directly observed, then our testing problem

becomes rather trivial. Under the hypothesis H : αkk = 0 the event {Ui = k, Ui+1 = k} has

probability zero, such that a reasonable testing procedure based on a sample U1, . . . , Un

17
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would reject H if and only if Tn = # {i|Ui = k, Ui+1 = k} > 0. The distribution of the

test statistic Tn under H coincides therefore with the Dirac measure concentrated at zero.

Formally this testing procedure can be seen as LRT.

Finding an analogy to our testing problem in context of i.i.d. mixtures is less straight

forward, since the notion of transition probabilities is, of course, meaningless in this context.

Also, the testing problem for components having zero weights πk = 0 does not give a valid

analogous setup because in this case crucial regularity conditions are violated, since the

number of components is not well-defined (cf. Chapter 3). We may discuss testing

H ′ : πk =
1

2
against K ′ : πk >

1

2
.

By restricting the parameter space Θ̄ = [1/2, 1] this testing problem also appears as a

boundary case. The general theory discussing boundary situations for i.i.d. r.v.s (e.g. Self

and Liang, 1987) shows that under certain regularity conditions the LRT-statistic behaves

under the hypothesis asymptotically as a mixture of a χ2
0- and χ2

1-distributed r.v.s with

equal weights, where the subindex denotes the number of the degrees of freedom of the

χ2-distribution, the notation χ0 consistently denotes the Dirac measure at zero.

Summarizing this we note that the i.i.d. analogue suggests that the LRT-statistic for

testing H : αkk = 0 in an HMM is asymptotically zero with probability 1/2, while the

Markov chain analogue yields a distribution degenerated at zero.

In our analysis we actually find both cases represented. On one hand we will show that the

results from Self and Liang (1987) and others can be extended to the HMM framework, such

that the LRT w.r.t. the likelihood function of an HMM follows asymptotically the ”one-

half-one-half” mixture under H. On the other hand simulations show that the finite sample

behavior of the LRT for many parameter settings exhibits intermediate stages between the

two described cases. Especially if the state-dependent distributions are well-separated the

weight of χ0 appears to be close to one even for moderately large sample sizes, such that

the theoretical result is a matter of huge sample sizes (cf. Section 2.3.2).

Introductory remarks

As this example indicates, testing problems involving the boundary are frequently en-

countered in practice of HMMs. Other relevant testing problems might be whether the

underlying Markov chain tends to stay in the state k, or whether the state j is on aver-

age more frequently visited than the state k. One requires testing for zero-entries of the

transition matrix as in the introductory example, testing a one-sided hypothesis on the

parameters of the transition matrix and on the parameters of the stationary distribution
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of the underlying Markov chain, respectively. All these testing problems require procedures

where the boundary situation is taken into account.

For i.i.d. r.v.s testing hypotheses, when the true parameter lies on the boundary or under

similar nonstandard conditions, is widely discussed. Classical theoretical contributions are

Chernoff (1954), Self and Liang (1987), Shapiro (1985), Shapiro (1988) and others, more

recently Drton (2009) introduces algebraic geometric techniques to this field for the analysis

of the parameter space and especially its singularities. Boundary situations achieve also

a strong interest from the view of applications as demonstrated by many publications, for

example in the context of econometrics (Demos and Sentana, 1998), geosciences (Kitchens,

1998, p.812) and clinical trials (Balabdaoui, Mielke and Munk, 2009). More references can

be found in the monograph by Silvapulle and Sen (2005).

As the LRT based on the MLE is a major approach for testing hypothesis in the i.i.d. setup

for various reasons we may also focus on LRT procedures. In the context of HMMs parame-

ter estimation via likelihood-based methods is well-established. For general HMMs, strong

consistency of the MLE was proved by Leroux (1992b). Bickel et al. (1998) established

asymptotic normality of the score with limit covariance matrix J0, as well as a uniform

law of large numbers for the Hessian of the log-likelihood with limit matrix −J0 (for re-

lated results see also Douc and Matias, 2001). Once these major results are obtained, the

standard likelihood theory such as asymptotic normality of the MLE with limit covariance

J −1
0 (Bickel et al., 1998) and the asymptotic χ2-approximation to the distribution of the

LRT under regularity conditions (Giudici et al., 2000) follows as in the i.i.d. setting.

We will show that the likelihood theory under nonstandard conditions with parameters on

the boundary, as developed by Chernoff (1954) and Self and Liang (1987), can be extended

from the i.i.d. case to HMMs by using the results of Bickel et al. (1998). In particular, we

derive the asymptotic distribution theory for the LRT for general, nonlinear hypotheses

with parameters on the boundary, and these parameters might also involve the parameters

of the state-dependent distributions.

In the following, after introducing to likelihood inference of HMMs, we discuss how the

asymptotic distribution theory for the LRT for HMMs under nonstandard conditions. An

extensive list of examples is given and simulation results as well as an illustrative applica-

tion of the tests for a series of epileptic seizure count data, previously analyzed by Le et al.

(1992), are presented.

The main results of this chapter are published in Dannemann and Holzmann (2008b).
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2.1 Likelihood inference for HMMs

As introduced in Section 1.5 we denote the HMM as bivariate process (Ui, Yi)i, where (Ui)i

is the unobserved Markov chain and (Yi)i the observed data. Throughout the chapter we

consider parametric HMMs, i.e. the state-dependent distribution functions (sdfs) are from

some parametric family (fθ)θ. The parameter of interest is constituted of the transition

matrix P = (αjk)1≤j,k≤m and the parameters of sdfs θk ∈ Θ ⊂ R
d for k = 1, . . . ,m. We

denote the parameter by

ϑ = (α11, . . . , α1,m−1, α21, . . . , αm,m−1, θ1, . . . , θm)

and assume ϑ ∈ Θ̄ ⊂ R
d̄ with d̄ = d + m(m − 1). In general, ϑ may also denote a

parametrization of the HMM that differs from the standard parametrization as defined

above, for example if some elements are known and fixed or exhibit a priori equality

constraints, e.g. α12(ϑ) = α32(ϑ). In this case one may understand in the following the

transition probabilities αjk(ϑ) as well as the parameters of the sdfs θk(ϑ) as functions of

ϑ. The subindex 0 indicates the true value ϑ0 and the true distribution P0 of the bivariate

process
(
Ui, Yi

)
i
. Note that since the parameters of the transition matrix αjk(ϑ) depend

on ϑ, so do the components of the unique stationary distribution πk = πk(ϑ).

The joint density of (U1, . . . , Un, Y1, . . . , Yn) (w.r.t. (counting measure)n × νn) is given by

pn(u1, . . . , un, y1, . . . , yn;ϑ) = pn(u1, . . . , un, y1, . . . , yn;α11, . . . , αm,m−1, θ1, . . . , θm)

= πu1
fθu1

(y1)
n∏
i=2

αui−1,ui
fθui

(yi)

= πu1

n−1∏
i=1

αui,ui+1

n∏
i=1

fθui
(yi),

the joint density of (Y1, . . . , Yn) (w.r.t. νn) by

pn(y1, . . . , yn;ϑ) =
m∑

u1=1

· · ·
m∑

un=1

pn(u1, . . . , un, y1, . . . , yn;ϑ), (2.1)

and the log likelihood is denoted by Ln(ϑ) = log pn(y1, . . . , yn;ϑ). A maximum likelihood

estimator (MLE) ϑ̂ is any value of ϑ ∈ Θ̄ which maximizes Ln(ϑ):

ϑ̂ := arg max
ϑ∈Θ̄

Ln(ϑ).

Computational issues concerning the evaluation of the log likelihood and its maximizer is

discussed in Section 2.3.
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2.1.1 ML-estimation and LR-testing under regular conditions for

HMMs

ML-estimation is well established in the context of HMMs. Baum and Petrie (1966) con-

sider HMMs where the sample space of the observables Yi is finite. They elaborated the

essential techniques for the analysis of MLEs for HMMs. Leroux (1992b) considers, as we

do, HMMs with finite state space and general observation space and shows that the MLE

is strongly consistent, i.e.

ϑ̂ −→ ϑ0 P0 − a.s., when n→ ∞
under classical Wald-type assumptions (for a detailed discussion of the result see Danne-

mann, 2006, pp.7-17). Leroux (1992b) also discusses the important issue of identifiability

and shows that it holds if (and only if) the corresponding family of m-component mixtures

is identifiable.

Asymptotic normality of the MLE

When we speak about asymptotic normality of the MLE we always mean that the sequence√
n(ϑ̂ − ϑ0) is asymptotically normally distributed with mean zero and finite covariance

matrix. Bickel et al. (1998) shows asymptotic normality of the MLE for HMMs. As this

result is the corner stone to establish the asymptotic theory for LR-testing under standard

and nonstandard conditions we may discuss this result in some detail. We begin with a

description of the assumptions under which asymptotic normality is proved by Bickel et al.

(1998). Besides ergodicity of the Markov chain they mainly suggest the following regularity

conditions:

Assumption 2.1. The maps ϑ �→ αjk(ϑ) and ϑ �→ πk(ϑ) for 1 ≤ j, k ≤ m have two

continuous derivatives and the maps ϑ �→ fθk(ϑ)(y) for 1 ≤ k ≤ m and y ∈ Y have two

continuous derivatives.

Assumption 2.2. Let ϑ = (ϑ1, . . . , ϑd̄). There exists a δ > 0 such that

1.) for all i ∈ {
1, . . . , d̄

}
and for all 1 ≤ k ≤ m

E0

[
sup

ϑ∈Bδ(ϑ0)

∣∣∣∣ ddϑi log fθk(ϑ)(Y1)

∣∣∣∣2
]
<∞;

2.) for all i, j ∈ {
1, . . . , d̄

}
and for all 1 ≤ k ≤ m

E0

[
sup

ϑ∈Bδ(ϑ0)

∣∣∣∣ d2

dϑidϑj
log fθk(ϑ)(Y1)

∣∣∣∣
]
<∞;
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3.) for j = 1, 2, all il ∈
{
1, . . . , d̄

}
, l = 1, . . . , j and for all 1 ≤ k ≤ m∫

sup
ϑ∈Bδ(ϑ0)

∣∣∣∣ dj

dϑi1 · · · dϑij
fθk(ϑ)(y)

∣∣∣∣ dν(y) <∞.

Assumption 2.3. There exists a δ > 0 such that with

ρ0(y) = sup
ϑ∈Bδ(ϑ0)

max
1≤j,k≤m

fθj(ϑ)(y)

fθk(ϑ)(y)
,

P0(ρ0(Y1) = ∞|U1 = k) < 1 for all 1 ≤ k ≤ m.

Following Self and Liang (1987) we formulate in addition conditions on the third derivatives,

where the derivatives are meant to be taken from the appropriate side, if ϑ is on the

boundary of the parameter space.

Assumption 2.1’ The maps ϑ �→ αjk(ϑ) and ϑ �→ πk(ϑ) for 1 ≤ j, k ≤ m have three

continuous derivatives and the maps ϑ �→ fθk(ϑ)(y) for 1 ≤ k ≤ m and y ∈ Y have three

continuous derivatives.

Assumption 2.2’ Let ϑ = (ϑ1, . . . , ϑd̄). In addition to Assumption 2.2, there exists a

δ > 0 such that for all i, j, l ∈ {
1, . . . , d̄

}
and for all 1 ≤ k ≤ m

E0

[
sup

ϑ∈Bδ(ϑ0)

∣∣∣∣ d3

dϑidϑjdϑl
log fθk(ϑ)(Y1)

∣∣∣∣
]
<∞.

Note that the Assumptions 2.1, 2.2 and 2.1’, 2.2’ are so called Cramér-type conditions and

appear natural from the classical theory of i.i.d. samples (for discussion cf. also Danne-

mann, 2006, p.19). Apart from the classical regularity conditions, i.e. mainly existence

and boundedness of the derivatives of the log densities, van der Vaart (1998) discusses

based on LeCam’s work an alternative condition. Based on the notion of differentiability

in quadratic mean, i.e. for densities pϑ, pϑ+h there exists a function gϑ with E[|gϑ|2] < ∞
such that

Eϑ

[
(
√
pϑ+h/

√
pϑ − 1 − 1/2hgϑ)

2
]

= o(|h|2),
van der Vaart shows that the results from Self and Liang (1987) can be derived from this

condition for i.i.d experiments (van der Vaart, 1998, see Thm. 7.12 and Thm 16.7). How-

ever, extending this concept to dependent data models like HMMs has not been established

in the literature so far.

Assumption 2.3 is not very demanding, as pointed out by Bickel and Ritov (1996), it

is for example violated if the sdfs of two states have distinct supports. However, Douc
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and Matias (2001) and Bickel et al. (2002) give conditions under which results implying

asymptotic normality hold that include this case.

Under the Assumptions 2.1-2.3 and assuming that ϑ0 lies in the interior of Θ̄, the strong

consistency of the MLE and the positive definiteness of the Fisher information matrix

J0 := − lim
n→∞

n−1D2
ϑLn(ϑ0).

Bickel et al. (1998) showed

√
n(ϑ̂− ϑ0)

L−→ N (0,J −1
0 ) P0-weakly. (2.2)

To achieve this Bickel et al. (1998) prove under the presented regularity conditions a central

limit theorem (CLT) for the score:

1√
n
DϑLn(ϑ0)

L−→ N(0,J0) P0-weakly, (2.3)

and a uniform law of large numbers (ULLN) for the Fisher information, i.e. for any strongly

consistent sequence (ϑ̃n)n

1

n
D2
ϑLn(ϑ̃n) → −J0 in P0-probability. (2.4)

For almost sure convergence results for this law of large numbers see Douc and Matias

(2001) and Bickel et al. (2002). After establishing these two lemmas asymptotic normality

of the MLE is just a matter of the standard Taylor expansion technique, since

0 = DϑLn(ϑ̂) = DϑLn(ϑ0) +D2
ϑLn(ϑ̄)(ϑ̂− ϑ0)

with ϑ̄ lying on the line segment [ϑ0, ϑ̂]. This yields

√
n(ϑ̂− ϑ0) = (−n−1D2

ϑLn(ϑ̄))−1
√
n
−1
DϑLn(ϑ0)

= J −1
0

√
n
−1
DϑLn(ϑ0) + oP (1).

by (2.4) and combining this with (2.3) proves (2.2). Note, that if ϑ0 lies on the boundary

of Θ̄ the maximum is not longer necessarily achieved at an inner point of Θ̄ (not even for

large n) such that DϑLn(ϑ̂) = 0 fails and hence (2.2) may not hold.

LR-testing under standard conditions

We call testing problems as under standard conditions, if the parameter space under the

hypothesis Θ̄0 ⊂ Θ̄ is given by a smooth manifold with ϑ0 lying in the interior of Θ̄0 and

Θ̄ (w.r.t. to the relative topologies). For testing the hypothesis

H : ϑ ∈ Θ̄0 against K : ϑ ∈ Θ̄ \ Θ̄0
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we denote the LRT-statistic Tn by

Tn = 2

(
sup
ϑ∈Θ̄

Ln(ϑ) − sup
ϑ∈Θ̄0

Ln(ϑ)

)
(2.5)

Suppose that Θ̄0 is (at least locally around ϑ0) parametrized by some smooth function

s : Θ̄ → R
k for k ≤ d̄ with derivative of rank k s.t. Θ̄0 = {ϑ ∈ Θ̄ : s(ϑ) = 0}, where

k corresponds to the codimension of Θ̄0. Then the usual asymptotic χ2–approximation

applies:

Tn
L−→ χ2

k.

Giudici et al. (2000) show this result for HMMs in analogy to the i.i.d. case based on

quadratic expansions of the likelihood function and on the fundamental lemmas (2.3,2.4).

Dannemann and Holzmann (2008a) extended this methodology to two-sample problems.

2.1.2 ML-estimation and LR-testing under nonstandard condi-

tions for HMMs

As mentioned above, asymptotic normality of ϑ̂ may not hold if the true parameter ϑ0 lies

on the boundary of the parameter space. In order to derive the asymptotic distribution

of the MLE and the LRT under such nonstandard conditions we introduce the following

definition of approximating cones.

Definition 2.1. A set Θ̄ ⊂ R
d̄ is said to be approximated at ϑ0 by a cone with vertex at

ϑ0, denoted by CΘ̄,ϑ0
= CΘ̄, if

inf
z∈CΘ̄

‖z − y‖ = o(‖y − ϑ0‖), for all y ∈ Θ̄,

and

inf
y∈Θ̄

‖z − y‖ = o(‖z − ϑ0‖), for all z ∈ CΘ̄.

A cone C with vertex at ϑ0 is given if for z ∈ C, we have a(z − ϑ0) + ϑ0 ∈ C for all

a > 0. Further, if CΘ is a cone with vertex at ϑ we denote the corresponding centered cone

by CΘ − ϑ. The concept for approximating cones was introduced to conduct likelihood

inference by Chernoff (1954) and is by now the standard approach used in many related

results (Self and Liang, 1987; Silvapulle and Sen, 2005).

Self and Liang (1987) show for i.i.d. models that the asymptotic distribution of the MLE,

restricted to a subset Θ ⊂ R
d, which is approximated at ϑ0 by a cone CΘ, is related to the
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distribution of the MLE restricted to the cone CΘ − ϑ0 based on a single observation from

a normal experiment with known covariance matrix J −1. Let us denote the density of a

multivariate normal with mean ϑ and covariance matrix J −1 by

f(z;ϑ) =
|J 1/2|
(2π)n/2

exp(−1

2
(z − ϑ)TJ (z − ϑ))

then the restricted MLE for ϑ based on an observation Z ∼ N (
0,J −1

)
is given by

ϑ̂ = arg max
ϑ∈Θ

f(Z;ϑ)

= arg min
ϑ∈CΘ−ϑ0

(Z − ϑ)TJ (Z − ϑ).

Self and Liang (1987) show that the calculation of the asymptotic distribution of the

restricted MLE in a general i.i.d model boils down to examine the asymptotic behavior of

the corresponding restricted MLE in a normal experiment. They establish this result by

proving
√
n-consistency of the MLE, verifying a quadratic expansion of the log-likelihood

and using the exchangeability of Θ and CΘ in the maximization step. This strategy is

strongly related to arguments in Chernoff (1954). The corner stones of this analysis are

built by a CLT for the score and an ULLN for the Fisher information, which are fulfilled in

i.i.d. models under reasonable regularity conditions. Since these two ingredients are also

available for HMMs we may formulate the following theorem related to Theorem 2 in Self

and Liang (1987).

Theorem 2.1. Suppose that we have an HMM with ergodic regime fulfilling Assumptions

2.1’, 2.2’, 2.3 with positive definite Fisher information J0 and assume that Θ̄ can be

approximated at the true value ϑ0 by a cone CΘ̄ with vertex at ϑ0. Then, if the MLE ϑ̂ is

strongly consistent, we have

√
n
(
ϑ̂− ϑ0

) L→ arg min
ϑ∈CΘ̄−ϑ0

(Z − ϑ)TJ0(Z − ϑ), (2.6)

where Z ∼ N (
0,J −1

0

)
.

The proof follows the steps in Self and Liang (1987) by using (2.3,2.4) from Bickel et al.

(1998). It is deferred to Section 2.4.

Remark 2.1. Note that the asymptotic distribution of the MLE as displayed in (2.6)

depends strongly on the form of the cone as well as on the Fisher Information matrix J0,

which is for HMMs not as straight forward accessible as for i.i.d. models. In order to

compute the limit distribution, one has to know the form of the cone and thus whether

ϑ lies on the boundary in advance. Self and Liang (1987) give some examples for explicit

calculations. An example in the context of HMMs is discussed in Section 2.2.
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Similarly as the asymptotic behavior of the MLE we may also investigate the LRT under

nonstandard conditions in the context of HMMs by reformulating the related result from

the i.i.d. setup. Let us again consider the general testing problem

H : ϑ ∈ Θ̄0 against K : ϑ ∈ Θ̄ \ Θ̄0

but now we do not assume that Θ̄0 is smooth around ϑ0, but we allow that ϑ0 lies on the

boundary of Θ̄0 and possibly also of Θ̄. Then we can derive the asymptotic distribution of

the LRT-statistic Tn given in (2.5).

Theorem 2.2. Suppose that we have an HMM with ergodic regime fulfilling Assumptions

2.1’, 2.2’, 2.3 with positive definite Fisher information J0 and assume that Θ̄0 and Θ̄ can

be approximated at the true value ϑ0 by cones CΘ̄0
and CΘ̄ with vertex at ϑ0, respectively.

Then, if the restricted MLE as well as unrestricted MLE are strongly consistent, we have

Tn
L→ inf

ϑ∈CΘ̄0
−ϑ0

(
Z − ϑ

)TJ0

(
Z − ϑ

)− inf
ϑ∈CΘ̄−ϑ0

(
Z − ϑ

)TJ0

(
Z − ϑ

)
, (2.7)

where Z ∼ N (
0,J −1

0

)
.

The proof follows the same arguments as in the proof of Theorem 2.1 and is along the

proof of Theorem 3 in Self and Liang (1987). Again essential ingredients are (2.3, 2.4)

from Bickel et al. (1998). Details are given in Section 2.4.

Remark 2.2. Similar to Theorem 2.1, the asymptotic distribution of Tn depends on the

form of the cone at ϑ0, such that for exact evaluation this needs to be known. Of course, it

also depends on the Fisher information matrix for HMMs J0. In some examples (cf. Exam-

ple 2.3 in the Section 2.2), it can be evaluated algebraically, otherwise, if required it has to

be estimated, for example, by using a version of the forward algorithm for computing the

observed information matrix (cf. Lystig and Huges, 2002). Alternatively, if one uses direct

numerical maximization for computation of the MLE ϑ̂, most algorithms give an estimate

of the Hessian matrix at ϑ̂ in addition. From (2.4) one can then in principle determine

an estimate of J0. Still, estimation of J0 is a difficult problem, and the approximation

(2.7) works best if the right side does not depend on J0, e.g. if the asymptotic distribution

reduces to mixture of χ2-distributions with different degrees of freedom and known weights

(e.g. Example 2.1).

Moreover, the asymptotic distribution is derived in Theorem 2.2 for a single true value

ϑ0 ∈ Θ̄0. Different ϑ0 ∈ Θ̄0 surely lead to different distributions, such that for testing the

hypothesis of the form above it is advocated to compute the critical values for all ϑ0 ∈ Θ̄0
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and reject H if the test statistic exceeds the largest one (cf. Self and Liang, 1987, p.610).

However, as for ϑ0 being an inner point of Θ̄0 the testing problem is trivial (for large n)

just by consistency, the analysis concentrates on the boundary of Θ̄0.

2.2 Examples

Self and Liang (1987) and others treat several examples of the asymptotic distributions

presented in the previous section for the i.i.d. framework. An important role in the analysis

of (2.7) play so called χ̄2-distributions, which are mixtures of χ2-distributions with different

degrees of freedom (cf. Silvapulle and Sen, 2005, Chp. 3). In this section we discuss a

extensive list of examples which arise specifically in the HMM context. We will see that

the right hand side of (2.7) can often, but not always expressed as a χ̄2-distribution.

Example 2.1 (Zero entries of the transition matrix). In order to reduce the number of

parameters in an HMM, and sometimes also from the context of the statistical problem,

it is reasonable to restrict attention to transition matrices with certain prespecified zero

entries (for an example see Eq. (2.19)). Therefore, testing for zeros in the transition matrix

is evidently of some practical interest as also argued in the introductory example. Such

boundary cases for LR testing were also studied by Bartolucci (2006, Sec. 4) for latent

Markov models, here we investigate them in a general HMM framework. Before considering

the testing problem, we briefly discuss the asymptotic behavior of the MLE α̂jk of an entry

αjk(ϑ0) = 0 with 1 ≤ j, k ≤ m, where it is assumed that the transition matrix still is

ergodic, and the parameters of the sdfs are allowed to vary. In case of two states, if α21 �= 0

and α22 �= 0 the regime is ergodic for α11 = 0 but evidently not for α12 = 0. With Theorem

2.1 we have

√
n α̂jk

L→ arg min
αjk≥0

(Z − αjk)
2 (2.8)

=

{
Z if Z ≥ 0

0 Z < 0

with Z ∼ N (
0, σ2

)
, where σ2 denotes the asymptotic variance of α̂jk. Hence the MLE

follows a mixture of a point measure at 0 and a half-normal distribution with equal weights.

Now, let us focus on testing the hypothesis that a certain entry αjk of the transition matrix

is zero:

H0
jk : αjk = 0 against K0

jk : αjk > 0.
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UnderH0
jk, we have one parameter of interest on the boundary and d̄−1 nuisance parameter

(not on the boundary). Hence the centered cones CΘ̄0
− ϑ0 and CΘ̄ − ϑ0 are up to affine

and orthonormal transformations given by

C̃Θ̄0
= {0} × R

d̄−1 and C̃Θ̄ = [0,∞) × R
d̄−1.

As described in Self and Liang (1987, case 5) this ensures together with Theorem 2.2

Tn
L→ 1

2
χ2

0 +
1

2
χ2

1. (2.9)

If one combines several of the H0
jk–type hypotheses, Tn will have a χ̄2-distribution (Bar-

tolucci, 2006), where the weights in the χ̄2-distribution can be determined from the entries

of the Fisher information matrix. Some results for χ̄2-distributions as well as simulation

procedures accessing the weights are discussed in Silvapulle and Sen (2005, Chp. 3). Thus,

a joint test would involve estimation of the Fisher information matrix. A simpler, though

less efficient method would be to test several of the H0
jk–type hypotheses via some multiple

testing procedure.

Example 2.2 (Boundary cases for parameters of the state-dependent distributions). An-

other possibility for model reduction is to test whether certain parameters of the sdfs are

on the boundary of their parameter spaces.

As a first example, suppose that the underlying Markov chain has two states, and that the

sdfs are binomial B(n, p)

fθk
(y) =

(
n

y

)
pyk (1 − pk)

n−y, pk ∈ [0, 1] k = 1, 2.

Then it might be of interest to test whether in one of the states of the Markov chain

(e.g. state 1) the outcome is just deterministic. This can be formulated by testing

H : p1 = 0 against K : p1 > 0.

If the regularity conditions are fulfilled, in particular if the model is identifiable, the cor-

responding LRT again has the asymptotic distribution (2.9).

Note that an HMM with binomial sdfs is identifiable, if n ≥ 2m−1 ≥ 3, since identifiability

then holds for the corresponding finite mixture of binomials. For an HMM with Bernoulli

sdfs, i.e. n = 1, as used for example in MacDonald and Zucchini (1997, pp. 140–144),

Petrie (1969) shows identifiability up to a Lebesgue null set ΘPetrie, where ΘPetrie includes

all finite mixture models of Bernoulli distributed r.v.s (cf. Section 1.2). From a theoretical
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viewpoint such a result is quite satisfying. However, in practice the assumption ϑ0 /∈ ΘPetrie

might be problematic. For ϑ0 being close to ΘPetrie the finite sample performance of the

MLE and also the LRT might be affected.

Another example arises in the analysis of count data (Leroux and Puterman, 1992). Often,

overdispersion (relative to Poisson), i.e. the variance in the sample exceeds the mean, is

present in such data sets and is modeled by finite mixtures of Poisson distributions. HMMs

then provide a natural generalization to the time-series context. A closer analysis may in-

dicate that overdispersion mainly arises since there are too many zero-observations, which

can be modeled by zero-inflation of the Poisson distribution (e.g., van den Broek, 1995).

This can be interpreted as a two-component Poisson mixture or two-state Poisson HMM

with λ = 0 for one of the components or states. Thus, in the context of overdispersed

count series, testing for zero inflation against general overdispersion structure can be ac-

complished by testing

H : λ1 = 0 against K : λ1 > 0.

The LRT exhibits under H again the asymptotic distribution (2.9).

Example 2.3 (One-sided tests for the transition probabilities). We consider one-sided

hypotheses for the entries of the transition matrix. First consider

H : αjl ≥ αkl against K : αjl < αkl,

where 1 ≤ j, k, l ≤ m, i.e. it is more probable under the alternative to have reached state

l coming from state k than coming from state j. On the boundary of H, i.e. for αjl = αkl,

Tn has the asymptotic distribution (2.9), and if αjl > αkl, by strong consistency of the

MLE, Tn → 0 in probability. Similarly, one can test

H : αjk ≥ αjl against K : αjk < αjl,

for 1 ≤ j, k, l ≤ m that under the alternative it is more likely to go from j to l than to k.

Again Tn has the asymptotic distribution (2.9) on the boundary {αjk = αjl} and tends to

zero in the interior of the hypothesis {αjk > αjl}.
Next we examine hypotheses of the form

Hq
jk : αjk ≤ q against Kq

jk : αjk > q (2.10)

for some q ∈ (0, 1) and 1 ≤ j, k ≤ m. For αjk(ϑ0) = q, we again have the asymptotic

distribution (2.9). For αjk(ϑ0) < q, we have Tn → 0 in probability as in the previous
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examples. The asymptotic distribution (2.9) also holds true if the testing problem (2.10)

is slightly changed into Hq
jk : αjk = q against Kq

jk : αjk > q.

As mentioned, the evaluation of the asymptotic distribution in Theorem 2.2 can be com-

plicated and may involve calculations of the Fisher Information matrix for HMMs. We

illustrate this in the following by considering several joint tests of Hq
jk-type hypotheses.

We will see that the resulting asymptotic distributions are χ̄2–distributions for some, but

not all cases.

For the Hq
jk-type hypothesis, a relevant special case is when j = k and q = 1/2, since in

this case under the alternative the HMM tends to stay in state j. We shall call such a

state stable. Let us consider joint tests on two states j, k ∈ {1 . . .m}. First we examine

the testing problem

Hj∧k : αjj = 1/2 ∧ αkk = 1/2 against Kj∧k : αjj > 1/2 ∧ αkk > 1/2. (2.11)

We shall only derive the limit law in a special situation, namely if there are only two states

and only the transition probabilities are allowed to vary. Here, under Hj∧k, we have both

parameters lying on the boundary. Hence, the derivations of Self and Liang (1987, case 7)

apply. They consider the transformed cones

C̃Θ̄0
= {(0, 0)} and C̃Θ̄ = J 1/2 ([0,∞) × [0,∞)) ,

where J denotes the Fisher information. As this also applies to the testing problem (2.11)

w.r.t. the Fisher information for HMMs, we have by Theorem 2.2 that under Hj∧k

Tn
L→

(1

2
− p

)
χ2

0 +
1

2
χ2

1 + p χ2
2, (2.12)

where the mixing quantity p is determined by the Fisher information matrix J0 and can

be evaluated as

p =
(
cos−1 ρ

)
/(2π), (2.13)

where ρ is the correlation coefficient in the covariance matrix J0. Algebraic evaluation of

J0 in the special case of an HMM with two states, where only the transition probabilities

are allowed to vary, shows that

ρ = −
∫
fθ1(y)fθ2(y)/

(
fθ1(y) + fθ2(y)

)
dy( ∫

f 2
θ1

(y)/
(
fθ1(y) + fθ2(y)

)
dy

∫
f 2
θ2

(y)/
(
fθ1(y) + fθ2(y)

)
dy

)1/2
, (2.14)

for θ1 = θ(j), θ2 = θ(k). A proof for this is given in Section 2.4. Note that −ρ is always

nonnegative, so that 1/4 ≤ p ≤ 1/2, and in particular the asymptotic distribution in (2.12)
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will be stochastically larger than 1
4
χ2

0 + 1
2
χ2

1 + 1
4
χ2

2, although if the distributions fθ1 and

fθ2 almost have disjoint support, these distributions will be close. An asymptotic upper

stochastic bound of Tn following (2.12) is in general simply given by 1
2
χ2

1 + 1
2
χ2

2.

The testing problem (2.11) is somewhat artificial, and if one intends to test the hypothesis

that neither state is stable against the alternative that both states are stable, the testing

problem should be formulated as

Hj∧k : αjj ≤ 1/2 ∧ αkk ≤ 1/2 against Kj∧k : αjj > 1/2 ∧ αkk > 1/2. (2.15)

It turns out that in this testing problem, the asymptotic distribution given in (2.7) is no

longer a χ̄2-distribution. A similar phenomenon was observed by Self and Liang (1987) in

case when a nuisance parameter lies on the boundary of the hypothesis. Note that this is

not true for the testing problem (2.15). In our case the reason is that the whole parameter

space under investigation, Θ̄ = Kj∧k∪Hj∧k (which is its approximating cone at (1/2, 1/2))

is not convex. The asymptotic distribution of Tn for the testing problem (2.15) in case of

two states with known sdfs for αjj(ϑ0) = αkk(ϑ0) = 1/2 turns out to be

Tn
L→ 1

2
χ2

0 +
π − φ

2π
χ2

2 +
π − φ

2π
P1(φ) +

2φ− π

2π
P2(φ), (2.16)

where φ = cos−1 ρ ∈ [π/2, π), ρ is given in (2.14), P1(φ) has density

h1(t;φ) =
2

π − φ

∫ (φ+π)/2

φ

1

2 a1(ψ, θ)
exp

(
− t

2 a1(ψ, φ)

)
dψ,

and P2(φ) has density

h2(t;φ) =
2

2φ− π

∫ φ

π/2

1

2 a2(ψ)
exp

(
− t

2 a2(ψ)

)
dψ,

and the functions a1(ψ, φ) and a2(ψ) are given by

a1(ψ, φ) = sin2(π − ψ) − sin2(ψ − φ),

a2(ψ) = cos2(ψ − π/2).

The proof is given in the Section 2.4. An asymptotic upper stochastic bound of Tn is given

by 1
2
χ2

0 + 1
2
χ2

2, this bound is not attained for any possible value of φ. For other parameter

constellations under Hj∧k, the limit distribution is stochastically smaller.

The asymptotic distributions (2.12) and (2.16) of the closely related testing problems

(2.11) and (2.15) differ surprisingly strongly. Since testing problems which lead to these
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asymptotics arise in other contexts as well, this example is of more general interest, also

for the i.i.d. setting.

Next let us consider the hypothesis that neither state is stable against the alternative that

at least one state is stable:

Hj∧k : αjj ≤ 1/2 ∧ αkk ≤ 1/2 against Kj∨k : αjj > 1/2 ∨ αkk > 1/2.

Then for all parameter values on the boundary of Hj∧k except for αjj(ϑ0) = 1/2 and

αkk(ϑ0) = 1/2, the asymptotic distribution in (2.9) holds. However, the relevant asymp-

totics are those under αjj(ϑ0) = 1/2 and αkk(ϑ0) = 1/2, since again by Self and Liang

(1987, case 7), Tn follows (2.12), which is asymptotically stochastically larger then the

limit law in (2.9).

Finally, we want to test the hypothesis that at most one state is stable against the alter-

native that both states are stable:

Hj∨k : αjj ≤ 1/2 ∨ αkk ≤ 1/2 against Kj∧k : αjj > 1/2 ∧ αkk > 1/2. (2.17)

For αjj(ϑ0) = 1/2 and αkk(ϑ0) = 1/2 and in case of two states with known sdfs we have

under Hj∨k

Tn
L→ 2π − φ

2π
χ2

0 +
φ

2π
P3(φ), (2.18)

where again φ = cos−1 ρ ∈ [π/2, π), ρ is given in (2.14) and P3(φ) has density

h3(t;φ) =
2

φ

∫ φ/2

0

1

2 sin2 ψ
exp

(
− t

2 sin2 ψ

)
dψ.

The proof requires an analysis similar to the one leading to (2.16) and is given in Section

2.4. Note that P3(π/2) coincides with the distribution of the minimum of two independent

χ2
1-distributed r.v.s. An asymptotic upper stochastic bound of Tn is given by 1

2
χ2

0 + 1
2
χ2

1.

Since for all parameter values on the boundary of Hj∨k except for αjj = 1/2 and αkk = 1/2,

the asymptotics (2.9) hold true, a test decision based on the asymptotic critical value in

(2.9) will keep the level all over Θ̄0.

The asymptotic distribution (2.18) illustrates once more that limiting distributions other

than those of χ̄2-type may occur as for example minima of χ2-r.v.s. The relevance of

distributions of this type was also recently observed by Drton (2009) and Balabdaoui,

Mielke and Munk (2009).

Example 2.4 (Tests on the stationary distribution). For an ergodic Markov chain, the

transition probability matrix uniquely determines the stationary distribution π. Hence,
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tests on the entries of π can be reformulated into tests for the entries of the transition

probability matrix, and Theorem 2.2 in principle allows to test one-sided hypotheses such

as πj ≥ πk for 1 ≤ j, k ≤ m. However, the formulas for π in terms of the αjks are highly non-

linear for more than two states, which makes explicit maximization under the hypothesis

difficult. We illustrate this issue for two states and for a certain type of transition matrices

in case of three states. A general, but different approach to this problem based on a

likelihood function under independence assumption will be discussed in Section 3.2.1.

First consider the case of two states, and suppose that we want to test certain restrictions

on π1 (or equivalently on π2 = 1 − π1), where the parameters of the sdfs are allowed to

vary. Let α12 = α and α21 = β, then π1 = β/(α+β). Consider testing the hypothesis that

state 1 is on average at least as often visited as state 2, i.e.

H1 : π1 ≥ π2 against K1 : π1 < π2.

Evidently, H1 is equivalent to the linear restriction β ≥ α, and on the boundary of H1,

i.e. for α = β = 1/2, one has the asymptotic distribution given in (2.9). Similarly, general

restrictions H1,p : π1 ≤ p for some p ∈ (0, 1) can be formulated into linear restrictions

H1,p : (1 − p)β ≤ pα, and on the boundary of the hypothesis, (2.9) applies as well.

Next we consider HMMs with three states, where the transition matrix is supposed to be

given by ⎛⎜⎝ 1 − α α 0

β 1 − β − γ γ

0 δ 1 − δ

⎞⎟⎠ , (2.19)

Here state 2 can be interpreted as a transitory state, through which every transition from

state 1 to state 3 has to pass. The stationary distribution is given by

π1 =
δβ

δβ + δα+ γα
, π2 =

δα

δβ + δα+ γα
, π3 =

γα

δβ + δα+ γα
.

Evidently, even linear restrictions on the parameters π1 will lead to nonlinear restrictions for

the parameters of the transition matrix. For example, consider the hypothesis H1,3 : π1 ≥
π3, which is equivalent to H1,3 : δβ ≥ γα. Using approximating cones, Theorem 2.2 yields

that on the boundary of the hypothesis, one again obtains the asymptotic distribution

(2.9) for Tn.

Another hypothesis which might be relevant in this situation is to test whether the tran-

sition state is prevalent while the boundary states are equally likely:

H1,2,3 : π1 = π3 ∧ π1 ≥ π2 against K1,2,3 : π1 �= π3 ∨ π1 < π2.
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which in terms of the parameters of the transition matrix can be formulated as

H1,2,3 : δβ = γα ∧ α ≥ β against K1,2,3 : δβ �= γα ∨ α < β

In this situation, we have one parameter of interest on the boundary, one parameter of

interest not on the boundary as well as d̄− 2 nuisance parameter (not on the boundary).

Here the centered cones are (up to coordinate transformation) given by

C̃Θ̄0
= {0} × [0,∞) × R

d̄−2 and C̃Θ̄ = R
d̄.

Analogously to Self and Liang (1987, case 6) this implies that (2.7) is represented by a

mixture of χ2-distributions with one and two degrees of freedom, respectively, and equal

weights. Hence, with Theorem 2.2, on the boundary of the hypothesis H1,2,3 we have

Tn
L→ 1

2
χ2

1 +
1

2
χ2

2.

2.3 Simulations and empirical illustration

We now investigate the finite sample properties of the proposed estimation and testing

procedures, namely the MLE and LRT under nonstandard conditions in a Monte Carlo

study. As the basis of this analysis is built by numerical evaluation of the likelihood function

for HMMs Ln(ϑ) and its maximizer we briefly comment on that issue at the beginning of

this section. This issue is also discussed in the monographs by Cappé et al. (2005); Durbin

et al. (1999); MacDonald and Zucchini (1997) with different emphases.

2.3.1 Some notes on numerical evaluation

From the definition of the likelihood function pn(y1, . . . , yn;ϑ) it is not clear that its eval-

uation even for moderate n is feasible, since pn is given as a sum of mn summands, each

summand representing one possible path {U1, . . . , Un}.
However, it is very advantageous that pn can be written as product of matrices

pn(y1, . . . , yn;ϑ) = π∗B1 P B2 P B3 P · · · P Bn−1 P Bn 1̄

where π∗ denotes the initial distribution, Bi = Diag(fθ1(yi), . . . , fθm
(yi)) m ×m matrices

with non-zero entries on the diagonal only, for i = 1, . . . , n, P the transition matrix and

1̄ = (1, . . . , 1)T ∈ R
m.
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Evaluating this product starting from the left is known as forward algorithm, whereas

starting from the right is called backward algorithm, since stopping at i gives the forward

probabilities

ai(k) = P (Y1 = y1, . . . , Yi = yi, Ui = k) = π∗B1 P B2 P · · · Biek

and backward probabilities

bi(k) = P (Yi+1 = yi+1, . . . , Yn = yn|Ui = k) = eTk P Bi+1 P · · · Bn 1̄

respectively, where ek = (0, . . . , 0, 1, 0, . . . , 0) denotes the kth unit vector. Note that ai, bi

can be calculated recursively from ai−1 or bi+1 starting with a1 = π∗B1 and bn = 1̄,

respectively. These algorithms allow efficient evaluation where the number of operations

increases only linearly in n (cf. Durbin et al., 1999, Chp. 3.2).

Although these algorithms allow a fast evaluation of the likelihood function one faces in

practice the problem that the probabilities ai(k), bi(k) as well as the likelihood itself become

extremely small even for moderate n, resulting in numerical underflow. Since we cannot

easily pass over to the log-likelihood, turning products into sums, as for i.i.d. models, one

needs to implement a scaling procedure, for example by replacing ai(k) by

ai(k)/ci with ci =
∑
k

ai(k)

in each step (cf. Durbin et al., 1999, Chp. 3.6). In this case the log-likelihood is given by

Ln = log pn =
∑

i log ci. Note that it might be advantageous from computational viewpoint

to apply the scaling not for every observation but only for every 10th or 100th observation,

when the underflow problem really becomes an issue.

We shall now discuss maximization of the log-likelihood Ln. Since HMMs can be seen as

extensions of finite mixtures models it is clear that we have to face similar problems as

in this framework. Clearly, there is no hope to find an explicit form for the MLE, hence

numerical maximization techniques must be applied. Moreover, the MLE might not exist

if Ln is unbounded. This is the case for HMMs with Gaussian sdfs, when the variance is

allowed to be arbitrarily close to zero. Here, one usually assumes a priori that the variance

is bounded away from zero. Since Ln is in general not convex, we cannot expect that Ln

has a unique local and global maximum. Although the Theorems 2.1 and 2.2 are valid for

any global maximizer, local maxima are problematic in practice, since many maximization

algorithms get stuck in those. Hence the choice of the starting value of the algorithms

becomes very important. As common in the literature we choose the true value as starting
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value in the simulation study. For real data applications several starting values have been

implemented.

Since Ln can be evaluated efficiently general purpose maximization techniques can be used

to provide an estimate ϑ̂. In R (R Development Core Team, 2009) the function nlm imple-

ments a Newton-type algorithm, an alternative function to conduct maximization is optim.

Both algorithms offer various choices of features and settings. However, as the functions

perform unconstrained maximization we usually must reparametrize the parameter ϑ using

log- and logit-transformations. In the simulation study below nlm is used to compute the

MLE- and LRT-values.

An alternative to general purpose techniques provide HMM-specific algorithms, namely

the Baum-Welch-Algorithm. This algorithm is historically the standard algorithm for

parameter estimation (learning) for HMMs. It can be seen as an EM-type algorithm

and is based on the missing information data structure of HMMs. As the forward and

backward probabilities ai(k), bi(k) are its major ingredients the algorithm is also called

forward-backward-algorithm.

Another class of HMM-specific algorithms is formed by gradient-based methods, which in

contrast to its general purpose relatives make use of explicit calculations for the gradient

and the Hessian of Ln. Turner (2008) suggested such a procedure and claims its good

performance in terms of reliability and speed. However, Cappé et al. (2005) note that EM

algorithms are often easier to implement from scratch and deal with parameter constraints

in a natural way (e.g. for the transition probabilities).

2.3.2 Quality of asymptotic approximation for the MLE and LRT

Testing for zero-entries (Example 2.1)

Consider testing the hypothesis H : α11 = 0 in a stationary two-state normal HMM, as

described in Example 2.1, where the asymptotic distribution for Tn is given in (2.9). The

transition matrix is taken as

A =

(
0 1

0.3 0.7

)
.

As discussed in the introductory example, it appears intuitive that the finite sample be-

havior of the MLE and LRT is strongly influenced by the degree of separation of the sdfs

fθ1 and fθ2 . At first we fix the parameters of the sdfs at their true values, and let only the

parameters of the transition matrix vary to choose the setup as simple as possible. Here,

for the parameters of the sdfs we choose σ2 = 1 and mean values μ1 = 0, μ2 = 1 in the

first setting, where the sdfs strongly overlap, and μ1 = 0, μ2 = 2 in the second setting,
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which corresponds to sufficiently well-separated sdfs. Secondly, we also allow the mean

values of the sdfs to vary and treat them as nuisance parameters, but we keep σ2 fixed.

In this setup it appears that if the sdfs strongly overlap, estimation is quite unstable for

reasonable sample sizes. In the case where we estimate the means of the sdfs, we therefore

treat the settings μ1 = 0, μ2 = 2 and μ1 = 0, μ2 = 3. The Gaussian sdfs as well as the

marginal densities of the two-state HMMs are displayed in Figures 2.1 and 2.2.
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Figure 2.1: Plot of Gaussian sdfs with

μ1 = 0 (solid line), μ2 = 1 (dashed line),

μ2 = 2 (dotted line), μ2 = 3 (dash-dotted

line). The sdf with μ1 = 0 is weighted by

π1 = 0.3/1.3 ≈ 0.23, the other ones by

π2 =≈ 0.77.
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Figure 2.2: Plot of the marginal den-

sities for two-state normal HMMs with

π ≈ (0.23, 0.77) and μ1 = 0, μ2 = 1 (solid

line), μ1 = 0, μ2 = 2 (dashed line), μ1 = 0,

μ2 = 3 (dotted line).

We generate N = 10000 samples of various sizes, and for visualization of the behavior of

the MLE α̂11 we plot a kernel estimator scaled corresponding to the weight of the non-

zero component estimated by π̂ = # {α̂11 > 10−3} /N . We also add a density of the half

normal distribution to the plot, which is given by f(x, σ) = 2ϕ(x/σ) for x > 0, where

σ > 0 and ϕ(·) denotes the density of the standard normal distribution. We estimate σ

via some robust estimator σ̂ and scale f(x, σ̂) by the asymptotic weight 1/2. To visualize

the behavior of the LRT we use PP-plots, which show for each nominal level 1 − α the

empirical probability that the LRT statistic Tn ≤ q1−α, where q1−α is the 1−α-quantile of

the asymptotic distribution.

The results for the MLE α̂11 for the model with fixed sdfs are displayed in Figures 2.3 and

2.4. They indicate that in case of well-separated sdfs the estimators are less varying than
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Figure 2.3: Plot of a scaled kernel estima-

tor π̂f̂ of the density of
√

nα̂11 for n = 100

(gray line, π̂=0.51) and n = 500 (black

line, π̂=0.51) for α0
11 = 0 in case μ1 = 0,

μ2 = 1 known. The dotted lines indicate

halfnormal distributions with weight 0.5.

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 2.4: Plot of a scaled kernel estima-

tor π̂f̂ of the density of
√

nα̂11 for n = 100

(grey line, π̂=0.39) and n = 500 (black

line, π̂=0.43) for α0
11 = 0 in case μ1 = 0,

μ2 = 2 known. The dotted lines indicate

halfnormal distributions with weight 0.5.

if the sdfs strongly overlap, which is intuitively clear, since the labeling of the observations

becomes easier, when the sdfs are separated. However, the weight π̂ appears significantly

lower than 1/2 for the case of separated sdfs.

The results for the LRT Tn for the model with fixed sdfs are displayed in Figures 2.5 and

2.6. It turns out that the asymptotic approximation for well separated sdfs is relatively

poor, even for large sample sizes such as n = 500 and in this simple situation with fixed

parameters for the sdfs, while for strongly overlapping sdfs the approximation is quite good

already for n = 100.

As argued in the introductory example the simulations show that the finite-sample behavior

of the MLE and the LRT especially in models with well-separated distributions somehow

lies between the case, where the regime can be observed directly resulting in a distribution

consisting of a point mass at zero, and the asymptotic case the 1/2-1/2-mixtures (2.8) and

(2.9), respectively.

The results for the models where the mean values of the sdfs are treated as nuisance param-

eter are displayed in Figures 2.7 - 2.10. In general, they confirm the previous findings. As

one should expect the presence of nuisance parameters results in stronger variations in the

estimates and slower convergence to the asymptotic distributions. Especially, comparing
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Figure 2.5: PP Plot of distribution of

Tn for n = 100 (solid line), n = 200

(dashed line) and n = 500 (dotted line)

for hypothesis H : α11 = 0 in case μ1 = 0,

μ2 = 1 known.
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Figure 2.6: PP Plot of distribution of

Tn for n = 100 (solid line), n = 200

(dashed line) and n = 500 (dotted line)

for hypothesis H : α11 = 0 in case μ1 = 0,

μ2 = 2 known.
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Figure 2.7: Plot of a scaled kernel

estimator π̂f̂ of the density of
√

nα̂11 for

n = 100 (grey line, π̂ = 0.39) and n = 500

(black line, π̂ = 0.41) for α0
11 = 0 in case

μ1 = 0, μ2 = 2 estimated. The dot-

ted lines indicate halfnormal distributions

with weight 0.5.
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Figure 2.8: Plot of a scaled kernel

estimator π̂f̂ of the density of
√

nα̂11 for

n = 100 (grey line, π̂=0.22) and n = 500

(black line, π̂ = 0.28) for α0
11 = 0 in case

μ1 = 0, μ2 = 3 estimated. The dot-

ted lines indicate halfnormal distributions

with weight 0.5.



40 Chapter 2. Testing in HMMs under nonstandard conditions

Figures 2.9 and 2.10 indicates once more that more separated sdfs give rise to much bigger

zero components of the finite sample distribution of the LRT.

Different asymptotic distributions (Example 2.3)

Next we consider testing the hypotheses (2.11), (2.15) and (2.17) for a stationary two-state

Poisson HMM. The parameters for the sdfs are fixed at their true values, which were taken

as λ1 = 1, λ2 = 2 and λ1 = 1, λ2 = 6, respectively. Further α12 = α21 = 1/2. For the

first scenario, the mixing proportion p given in (2.13) equals 0.384, whereas for the second

scenario, it is 0.269. Again we generated N = 10000 samples of various sizes. In order to

illustrate the different forms of the asymptotic distributions, we show the empirical distri-

bution functions of Tn.

Figures 2.11 and 2.12 give the results for the testing problem (2.11), where the limit dis-

tribution is as in (2.12). In most cases, the approximation is quite accurate already for a

sample size of n = 100, for higher sample sizes, it is almost indistinguishable from its limit

version.

Figures 2.13 and 2.14 show the simulation results for (2.15). Here, the asymptotic dis-

tributions cannot be evaluated easily analytically, but it is simple to sample from these

distributions via the formula (2.16). Figures 2.15 and 2.16 show the simulation results for

(2.17). Again, the asymptotic distributions is determined via sampling from (2.18).

The figures illustrate that the (not so) different hypotheses (2.11), (2.15) and (2.17) lead

to (quite) different limit distributions of Tn (2.12), (2.16) and (2.18), also the value of p

determined by the Fisher information matrix (cf. (2.13)) influences the limit distribution

apparently.

Tests on the stationary distribution in a three-state HMM (Example 2.4)

Further, we examine testing the hypothesis H1,3 : π1 ≥ π3 as described in Example 2.4 for a

stationary three-state Poisson HMM. We use a transition matrix as in (2.19), with α = 0.4,

β = 0.2, γ = 0.3 and δ = 0.6, yielding for the stationary distribution π1 = π3 = 0.25,

π2 = 0.5. The parameters of the sdfs were specified with λ1 = 2, λ2 = 5 and λ3 = 11.

The asymptotic distribution of the likelihood ratio statistic Tn on the boundary of the

hypothesis H1,3 is (2.9).

Firstly, we consider the described model for fixed and known values of the λ’s. Secondly,

the λ’s are considered as unknown parameters one has to estimate. For both cases we

generate N = 5000 samples of sizes n = 100, 500. The results are displayed in Figs. 2.17
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Figure 2.9: PP Plot of distribution of

Tn for n = 100 (solid line), n = 200

(dashed line) and n = 500 (dotted line)

for hypothesis H : α11 = 0 in case μ1 = 0,

μ2 = 2 estimated.
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Figure 2.10: PP Plot of distribution of

Tn for n = 100 (solid line), n = 200

(dashed line) and n = 500 (dotted line)

for hypothesis H : α11 = 0 in case μ1 = 0,

μ2 = 3 estimated.
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Figure 2.11: Empirical distribution func-

tion of Tn for n = 100 (solid line) for

the hypothesis (2.11) in case λ1 = 1,

λ2 = 2, together with the limit distribu-

tion (dashed line). The dotted lines in-

dicate upper and lower stochastic bound

independent of p.
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Figure 2.12: Empirical distribution func-

tion of Tn for n = 100 (solid line) for

the hypothesis (2.11) in case λ1 = 1,

λ2 = 6, together with the limit distribu-

tion (dashed line). The dotted lines in-

dicate upper and lower stochastic bound

independent of p.
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Figure 2.13: Empirical distribution func-

tion of Tn for n = 100 (solid line) for

the hypothesis (2.15) in case λ1 = 1,

λ2 = 2, together with the limit distri-

bution (dashes line) and upper and lower

bounds independent of p (dotted lines).
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Figure 2.14: Empirical distribution func-

tion of Tn for n = 100 (solid line) for

the hypothesis (2.15) in case λ1 = 1,

λ2 = 6, together with the limit distri-

bution (dashed line) and upper and lower

bounds independent of p (dotted lines).
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Figure 2.15: Empirical distribution func-

tion of Tn for n = 100 (solid line) for

the hypothesis (2.17) in case λ1 = 1,

λ2 = 2, together with the limit distri-

bution (dashes line) and upper and lower

bounds independent of p (dotted lines).
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Figure 2.16: Empirical distribution func-

tion of Tn for n = 100 (solid line) for

the hypothesis (2.17) in case λ1 = 1,

λ2 = 6, together with the limit distri-

bution (dashed line) and upper and lower

bounds independent of p (dotted lines).



2.3. Simulations and empirical illustration 43

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

nominal level

em
pi

ric
al

 le
ve

l

Figure 2.17: PP Plot of distribution of

Tn for n = 100 (dashed line) and n = 500

(dotted line) for hypothesis H1,3 in case of

fixed and known λ’s.
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Figure 2.18: PP Plot of distribution of

Tn for n = 100 (dashed line) and n = 500

(dotted line) for hypothesis H1,3 in case of

estimated λ’s.

- 2.18 using PP-plots. For fixed λ’s the approximation is quite satisfactory even for small

sample sizes (n = 100). Naturally, estimation of the λ’s increases variation of the model.

But for large sample sizes (n=500) the approximation is quite good in this case, too.

2.3.3 Series of epileptic seizure counts

Albert (1991) proposed the use of two-state Poisson HMMs for series of daily seizure counts

of epileptics. Using the implementation of the EM algorithm as suggested in Baum and

Petrie (1966), Le et al. (1992) fit such models to the series of daily counts of epileptic

seizures in one patient participating in a clinical trail at British Columbia’s Children’s

Hospital. The originally published series consists of 225 observations, however, as indicated

in MacDonald and Zucchini (1997, p.147), observations 92-112 should be deleted, thus we

use the corrected data set of 204 observations.

Accounting for this the data are displayed in Figure 2.19 in the same way as in Le et al.

(1992). From the figure one can observe that the data seems to be dependent over time,

the empirical correlation between two consecutive observations (0.236) differs clearly from

zero. As the variance (0.924) exceeds the mean (0.662), we see that overdispersion relative

to Poisson is also present in the data. In the neurology literature, Hopkins et al. (1985)

proposed that the variation of seizure occurrences and its dependency structure could be
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Figure 2.19: Daily recorded seizure counts from a single patient over 204 days.

(Source: The data set is published in MacDonald and Zucchini (1997, p.208, Table B.2).)

modeled by a Markov chain. Both features, dependency as well as overdispersion, can

be incorporated naturally in the two-state Poisson HMM, where the two states of the

chain represent two states of seizure susceptibility. Haut (2006) pointed out that such

Markovian dependence of seizure susceptibility allows estimates for the expected incidence

of subsequent seizure days, which might be useful for recognition of seizure clusters.

A relevant question in this model is whether seizures actually occur in both states of the

HMM, or whether there is only a single “seizure state”, whereas, in the other state, no

seizures occur.

For the above mentioned data set MacDonald and Zucchini (1997) fitted a stationary

two-state Poisson HMM with estimated transition matrix(
0.973 0.027

0.035 0.965

)
and seizure frequencies λ1 = 0.262 and λ2 = 1.167. Thus, we intend to test whether a

model with λ1 = 0 could be used instead, and therefore propose to test H : λ1 = 0 as

described in Example 2.2. Here, the asymptotic distribution of the likelihood ratio statistic

Tn under the hypothesis H follows (2.9). However, the likelihood ratio test yields a value

of Tn = 10.25, which corresponds to a p-value of nearly 0. Hence, the hypothesis H is

rejected, and seizures occur in both states of the HMM.

The estimate of the transition matrix yields an estimate for the stationary distribution

π̂ = (0.567, 0.433). Therefore, the estimate indicates that state 1 with low seizure suscep-
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tibility is on average more frequently visited than state 2. In order to test whether this

observation is statistically significant, we test whether the hypothesis H : π2 ≥ π1 can

be rejected. Again, the asymptotic distribution of the likelihood ratio statistic Tn on the

boundary of the hypothesis is (2.9). For this test the likelihood ratio statistic is Tn = 0.111

with corresponding p-value 0.369. Hence, we cannot reject the hypothesis H at a 5%-level,

thus, there is not enough evidence that state 1 is more often visited than state 2.

2.4 Proofs

Proof of Theorem 2.1. As mentioned, the proof follows the arguments in Self and Liang

(1987) respectively Chernoff (1954) using (2.3) and (2.4) from Bickel et al. (1998). At first√
n-consistency of ϑ − ϑ0 needs to be verified. As argued by Chernoff (1954), Lemma 1,

the expansion of the log-likelihood around ϑ0 gives

0 ≤ 1

n
Ln(ϑ̂) − 1

n
Ln(ϑ0) =

1

n
DLn(ϑ0)

T (ϑ̂− ϑ0) + (ϑ̂− ϑ0)
TD2Ln(ϑ0)(ϑ̂− ϑ0) + op(1).

By assumption and by (2.3,2.4) we have∥∥ϑ̂− ϑ0

∥∥ = op(1),
∥∥ 1

n
D2Ln(ϑ0) + J0

∥∥ = op(1) and
∥∥ 1

n
DLn(ϑ0)

∥∥ = Op(
√
n).

in appropriate norms, and hence by positive definiteness of J0

0 ≤ (ϑ̂− ϑ0)
TJ0(ϑ̂− ϑ0) ≤

∥∥ϑ̂− ϑ0

∥∥Op(
√
n) + op(1),

which implies ϑ̂− ϑ0 = Op(n
−1/2).

Secondly, as in Self and Liang (1987), Lemma 1, we may expand the likelihood for ϑ with

ϑ̂− ϑ0 = Op(n
−1/2) as follows

2

n
Ln(ϑ) − 2

n
Ln(ϑ0) =

2

n
DLn(ϑ0)

T (ϑ− ϑ0) +
1

n
(ϑ− ϑ0)

TD2Ln(ϑ0)(ϑ− ϑ0) + op(1)

=
1

n
DLn(ϑ0)

T (ϑ− ϑ0) +
1

n
(ϑ− ϑ0)

TDLn(ϑ0) − (ϑ− ϑ0)
TJ0(ϑ− ϑ0) + op(1)

= ZT
nJ0(ϑ− ϑ0) + (ϑ− ϑ0)

TJ0Zn − (ϑ− ϑ0)
TJ0(ϑ− ϑ0)

= ZT
nJ0Zn − (Zn − (ϑ− ϑ0))

TJ0(Zn − (ϑ− ϑ0)) + op(1)

with Zn = 1/nJ −1
0 DLn(ϑ0), where the first summand does not depend on ϑ. Note that

the second equality holds by (2.4). Hence

arg max
ϑ∈Θ̄

Ln(ϑ) = arg min
ϑ∈Θ̄

(
√
nZn −

√
n(ϑ− ϑ0))

TJ0(
√
nZn −

√
n(ϑ− ϑ0)) + op(1)

= arg min
ϑ∈CΘ̄

(
√
nZn −

√
n(ϑ− ϑ0))

TJ0(
√
nZn −

√
n(ϑ− ϑ0)) + op(1)

= arg min
ϑ∈CΘ̄−ϑ0

(
√
nZn − ϑ)TJ0(

√
nZn − ϑ) + op(1)
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where the second equality holds by the definition of approximating cones (cf. Chernoff,

1954, p.578) and the fact that cones are homogeneous. Since
√
nZn is centered asymptotic

normal with covariance matrix J −1
0 by (2.3) this concludes the proof.

Proof of Theorem 2.2. As mentioned, Theorem 2.2 is a straight forward extension of The-

orem 3 by Self and Liang (1987), the proof follows the arguments therein. Denoting

Zn = 1/nJ −1
0 DLn(ϑ0) we apply the same expansion for

√
n-consistent sequences as in the

proof of Theorem 2.1 and get

Tn = 2
(
sup
ϑ∈Θ̄

Ln(ϑ) − sup
ϑ∈Θ̄0

Ln(ϑ)
)

= 2
(
sup
ϑ∈Θ̄

Ln(ϑ) − Ln(ϑ0)
)− 2

(
sup
ϑ∈Θ̄0

Ln(ϑ) − Ln(ϑ0)
)

= inf
ϑ∈Θ̄0

n(Zn − (ϑ− ϑ0))
TJ0(Zn − (ϑ− ϑ0))

− inf
ϑ∈Θ̄

n(Zn − (ϑ− ϑ0))
TJ0(Zn − (ϑ− ϑ0)) + op(1)

= inf
ϑ∈CΘ̄0

n(Zn − (ϑ− ϑ0))
TJ0(Zn − (ϑ− ϑ0))

− inf
ϑ∈CΘ̄

n(Zn − (ϑ− ϑ0))
TJ0(Zn − (ϑ− ϑ0)) + op(1)

= inf
ϑ∈CΘ̄0

−ϑ0

(
√
nZn − ϑ)TJ0(

√
nZn − ϑ) − inf

ϑ∈CΘ̄−ϑ0

(
√
nZn − ϑ)TJ0(

√
nZn − ϑ) + op(1).

The third equality follows from this expansion, the subsequent equalities use the approx-

imation property and the homogeneity of the cones (cf. Chernoff, 1954). Since
√
nZn

is centered asymptotic normal with covariance matrix J −1
0 by (2.3), the statement fol-

lows.

Proof of (2.14). As we consider a two-state HMM we choose w.l.o.g. j = 1, k = 2. We

have to compute the asymptotic covariance matrix of the score vector

∇ϑLn(ϑ) = ∇ϑ log pn(Y1, . . . , Yn;ϑ)

= Eϑ [∇ϑ log pn(U1, . . . , Un, Y1, . . . , Yn;ϑ)|Y1:n]

= Eϑ [∇ϑ log πU1
(ϑ)|Y1:n] +

n−1∑
i=1

Eϑ
[∇ϑ log(αUi,Ui+1

(ϑ))|Y1:n

]
, (2.20)

where Y1:n =
(
Y1, . . . , Yn

)
, following from Fisher’s identity (cf. Cappé et al., 2005, (10.12.),

p.354 and (10.29), p.362).

Let α12 = α and α21 = β, so that ϑ = (α, β). Neglect the first term in (2.20) for the

moment, corresponding to the initial distribution. The derivatives ∂/∂α, ∂/∂β of the
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second term are computed as

∂

∂α
log

(
αu,u′(ϑ)

)
=

1

α
δ(1,2)(u, u

′) − 1

1 − α
δ(1,1)(u, u

′),

∂

∂β
log

(
βx,x′(ϑ)

)
=

1

β
δ(1,2)(u, u

′) − 1

1 − β
δ(1,1)(u, u

′),

where δx(y) = 1 if x = y and = 0 otherwise. So the first component (the derivative w.r.t. α)

of the second term in (2.20) is the sum

n−1∑
i=1

Eϑ

[ 1

α
δ(1,2)(Ui, Ui+1) − 1

1 − α
δ(1,1)(Ui, Ui+1)|Y1:n

]
. (2.21)

The key observation is that for α0 = β0 = 1/2, the (Ui) are independent Bernoulli dis-

tributed with success probability 1/2, and the (Yi) are also i.i.d. following a two-component

mixture distribution with density

1

2
fθ1(y) +

1

2
fθ2(y).

Using

δ(j,k)(Ui, Ui+1) = δj(Ui)δk(Ui+1), j, k ∈ {1, 2},
(2.21) evaluated at ϑ0 can be rearranged as

n−1∑
i=1

2E0

[
δ1(Ui)|Yi

]
E0

[
δ2(Ui+1)|Yi+1

]− n−1∑
i=1

2E0

[
δ1(Ui)|Yi

]
E0

[
δ1(Ui+1)|Yi+1

]
,

= 2
n−1∑
i=1

E0

[
δ1(Ui)|Yi

](
E0

[
δ2(Ui+1)|Yi+1

]− E0

[
δ1(Ui+1)|Yi+1

])
,

and a similar expression can be obtained for the second component of the score (the

derivative w.r.t. β). Now

E0

[
δj(Ui)|Yi

]
=

1
2
fθj

(Yi)
1
2
fθ1(Yi) + 1

2
fθ2(Yi)

=
fθj

(Yi)

fθ1(Yi) + fθ2(Yi)
, j ∈ {1, 2}.

Introducing the random variables

Zi,1 =
fθ1(Yi)

fθ1(Yi) + fθ2(Yi)

fθ2(Yi+1) − fθ1(Yi+1)

fθ1(Yi+1) + fθ2(Yi+1)
,

Zi,2 =
fθ2(Yi)

fθ1(Yi) + fθ2(Yi)

fθ1(Yi+1) − fθ2(Yi+1)

fθ1(Yi+1) + fθ2(Yi+1)
,
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the components of the score are given by

Sn,1 = 2
n−1∑
i=1

Zi,1, Sn,2 = 2
n−1∑
i=1

Zi,2.

Although the Zi,1’s are not i.i.d., the covariances for different i’s are 0, since the Yi’s are

independent and

E0[(fθ2(Yi) − fθ1(Yi))/(fθ1(Yi) + fθ2(Yi))]

=

∫
(fθ2(y) − fθ1(y))/(fθ1(y) + fθ2(y)) (1/2fθ1(y) + 1/2fθ2(y))dy

=

∫
fθ2(y) − fθ1(y) dy = 1 − 1 = 0

Hence the correlation can be computed independently of i as

ρ =
E0Zi,1Zi,2

(E0Z2
i,1E0Z2

i,2)
1/2

= −
∫
fθ1(y)fθ2(y)/

(
fθ1(y) + fθ2(y)

)
dy( ∫

f 2
θ1

(y)/
(
fθ1(y) + fθ2(y)

)
dy

∫
f 2
θ2

(y)/
(
fθ1(y) + fθ2(y)

)
dy

)1/2
,

For the first term in (2.20), one has that

E0

[∇ϑ log(πU1
(ϑ))|Y1:n

]
= E0

[∇ϑ log(πU1
(ϑ))|Y1

]
,

of which the contribution to the asymptotic covariance matrix is zero , which concludes

the proof. Note that this example generalizes the Example 4.3 in Bickel et al. (2002), who

consider reversible Markov chains and thus only have a single parameter.

Proof of (2.16) . To proof the asymptotic distribution of Tn under (2.15) we can apply

Theorem 2.2 and a coordinate transformation to obtain

Tn
L→ T := inf

z∈H

(
Z − z

)T (
Z − z

)− inf
z∈H∪K

(
Z − z

)T (
Z − z

)
= ‖Z − ZH‖2 − min

(‖Z − ZH‖2 , ‖Z − ZK‖2) (2.22)

where Z is a bivariate standard normal random variable, H = J 1/2
0

(
R

− × R
−
)

and K =

J 1/2
0

(
R

+ × R
+
)
, as shown in Figure 2.20, ZH and ZK denote the orthogonal projections

of Z onto H and K respectively. The spaces H and K are determined by the angle

π/2 ≤ φ ≤ π which depends on J0, i.e. φ = cos−1 ρ. Firstly, we calculate the distribution

of T conditional on the event {Z ∈ region 1 or 1a} and the weight P (Z ∈ region 1 or

1a). If Z is in region 1, then obviously both terms in (2.22) are zero. For region 1a the
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H

K

(π − φ) 2

φ

1

1a

1a

3

3

24

4

Figure 2.20: Diagram of the parameter space of Example 2.3.

difference is zero as well, since ‖Z − ZH‖ ≤ ‖Z − ZK‖. Hence the conditional distribution

of T in region 1 and 1a is χ2
0. As displayed in the figure its weight is 1

2π

(
φ+ 2π−φ

2

)
= 1

2
.

If Z is in region 2 and therefore in K the term ‖Z − ZK‖ is zero. Hence the distribution

of T conditioned on {Z ∈ region 2} is determined by the first term, which gives a χ2
2-

distribution, since ZH = 0. The weight is given by π−φ
2π

.

Observe that the r.v. Z is determined by its argument ψ = arg(Z) and its length r(Z) by

Z = (r cosψ, r sinψ), where r2 is χ2
2-distributed and ψ is uniformly distributed on [0, 2π),

and r2 and ψ are independent. If Z is now in region 3, i.e. ψ ∈ [φ, (φ+ π)/2) ∪
[−(π − φ)/2, 0), one has ‖Z − ZH‖2 = r2 sin2(π − ψ) and ‖Z − ZK‖2 = r2 sin2(ψ − φ).

Setting

a1(ψ, φ) = sin2(π − ψ) − sin2(ψ − φ),

for fixed ψ the difference T (ψ) = ‖Z − ZH‖2 − ‖Z − ZK‖2 = r2a1(ψ, φ) has a rescaled

χ2
2-distribution with density p(t;φ, ψ) = 1

2a1(ψ,φ)
exp

(
− t

2a1(ψ,φ)

)
. Hence the density of T is

an averaged rescaled χ2
2-distribution P1(φ) with density

h1(t;φ) =
2

π − φ

∫ (φ+π)/2

φ

1

2a1(ψ, φ)
exp

(
− t

2a1(ψ, φ)

)
dψ.
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The weight of region 3 is given by π−φ
2π

.

For region 4 one proceeds similarly. For ψ ∈ [0, φ− π/2)∪ [π/2, φ) one has ‖Z − ZH‖2 =

r2 cos2 ψ and trivially ‖Z − ZK‖ = 0. Setting

a2(ψ) = cos2
(
ψ − π

2

)
,

this yields a conditional distribution P2(φ) of T with density

h2(t;φ) =
2

2φ− π

∫ φ

π/2

1

2a2(ψ)
exp

(
− t

2a2(ψ)

)
dψ

with weight 2
φ−π

2

2π
= 2φ−π

2π
.

Proof of (2.18) . The proof follows the same arguments as the proof of (2.16). Again

after coordinate transformation we have (2.22), where now H = J 1/2
0

(
R

2\(R+ × R
+)

)
and K = J 1/2

0

(
R

+ × R
+
)
. So H is formed by the regions 1, 1a and 3 in Figure 2.20.

Clearly for Z ∈ H both terms in (2.22) vanish, leading to a χ2
0-distribution with weight

P (Z ∈ H) = (2π − φ)/2π. Now we assume Z ∈ K and ψ = arg(Z) ∈ [0, φ/2), then

‖Z − ZK‖2 is obviously zero and ‖Z − ZH‖2 = r2 sin2(ψ) with r2 being χ2
2-distributed

and ψ is uniformly distributed on [0, 2π), mutually independent. Hence conditioned on

{Z ∈ K, arg(Z) ∈ [0, φ/2)} T follows a distribution P3 with density

h3(t;φ) =
2

φ

∫ φ/2

0

1

2 sin2 ψ
exp

(
− t

2 sin2 ψ

)
dψ.

By symmetry T follows the same distribution if conditioned on {Z ∈ K, arg(Z) ∈ [φ/2, φ)}
such that the weight of P3 is given by 2 1

2π
φ
2

= φ
2π

, which yields (2.18).



Chapter 3

Testing for the number of states

In this chapter we discuss testing for the number of components or states in finite mix-

tures, HMMs as well as switching regression models with independent or Markov-dependent

regime. We briefly introduce into the general problem of selecting the correct model in the

framework of mixtures and HMMs and discuss the testing problem for homogeneity, i.e.

m = 1 against m > 1, as considered by Ghosh and Sen (1985), Chen and Chen (2001) and

many others for mixtures and Gassiat and Keribin (2000) for HMMs. Some new results

of this chapter are published in Dannemann and Holzmann (2008c) and Dannemann and

Holzmann (2010).

In general, we may encounter the situation, where we have two nested models M0 ⊂ M1

and must decide if the true model P0 falls into M0 or M1 \M0. It is a standard approach

for various statistical models to treat this problem in terms of model selection criteria, e.g.

AIC, BIC, . . . (for a comprehensive overview see the monograph by Claeskens and Hjort,

2008). Based on the notion of penalized likelihood one defines penalties pen(M0, n) <

pen(M1, n) growing with the complexity of the model and one compares

sup
P∈M0

Ln(P ) − pen(M0, n)
>

<
sup
P∈M1

Ln(P ) − pen(M1, n)

with Ln denoting the log-likelihood function of the particular models. The AIC results

from this notion by setting pen(M, n) = dim(M), while the BIC is expressed through

pen(M, n) = log(n) dim(M)/2. If one knows that supP∈M1
Ln(P ) − supP∈M0

Ln(P ) has

some asymptotic distribution Pasym the LRT w.r.t. a level α can also be interpreted as

model selector with pen(M1, n) − pen(M0, n) = q1−α(Pasym), where q1−α(P ) denotes the

1 − α quantile of a distribution P .

51
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Selecting the number of states in latent variable models

For the models introduced in Chapter 1 the correct selection of the number of states m is

very crucial for theoretical analysis, e.g. the asymptotic normality results for HMMs, and

hence the Theorem 2.1 and 2.2 are only valid for the correct choice of m. For practical

applications and interpretation of these models it is also of major importance to get m

correctly.

For mixture models the log-likelihood L
(m)
n is given by (1.2) and the dimension of an

m-component mixture is dim(Mm) = m− 1+dm forming the mentioned criteria AIC and

BIC, which are both frequently applied in practice (Frühwirth-Schnatter, 2006). Leroux

(1992a) proves that these criteria do not underestimate the number of components of a

finite mixture. For the BIC Keribin (2000) shows consistency, i.e. BIC asymptotically

selects the true model. Other information criteria in the context of mixtures are discussed

in McLachlan and Peel (2000).

For HMMs much less is known about model selection criteria and its behavior, when choos-

ing the number of states m. As pointed out by Cappé et al. (2005, Chp. 15) this problem

is closely related to order estimation for Markov chains. In practice model selection cri-

teria are frequently used to determine m. Either one forms the criteria by considering

the full-model log-likelihood defined in (2.1) (e.g. MacDonald and Zucchini, 1997) with

dim(M) = m(m − 1) + dm or one may reduce the problem to selecting the number of

components in the marginal mixture distribution (e.g. Poskitt and Zhang, 2005). Cappé

et al. (2005) analyze order estimation in their monograph in detail and define a consis-

tent criterion with a comparably strong penalty based on information theoretical analysis,

however they focus on HMMs with finite sample space. Other suggestions are made by

Celeux and Durand (2008), who consider the application of cross validation techniques to

determine m, MacKay (2002), who gives a consistent order estimator based on minimum-

distance methods and Rydén (1995), who investigates order estimation based on a split

data likelihood function.

For switching regression models the classical model selection criteria are widely used to

determine the number of components (e.g. Skrondal and Rabe-Hesketh, 2004). In addition

to the choice of the number of components one needs to select the relevant covariates.

Khalili and Chen (2007) consider the latter problem and argue that their approach can

also be applied when m is not known aprior, but estimated consistently. Naik et al.

(2007) propose a mixture regression criteria (MRC) of AIC-type dealing jointly with both

problems.
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Testing for the number of states in latent variable models

Although the LRT can be interpreted as model selection procedure we should point out that

testing in general, and especially in this particular setting follows a different philosophy.

Statistical tests allow for a decision between a hypothesis and an alternative, where the level

α = PH(”reject H”) is at least asymptotically controlled. Naturally, testing procedures

are not consistent, in the model selection sense, i.e. that asymptotically the true model

is picked almost surely. A major advantage of tests is that in contrast to model selection

criteria, they produce a p-value, which quantifies the confidence in the test result (cf.

McLachlan and Peel, 2000).

The main problem of the LRT on the number of states is that the usual regularity conditions

on ΘH and ΘK do not apply. Typically elements of ΘH lie on the boundary of the parameter

set and more unpleasant ΘH is a non-identifiable subset of ΘK . Hence the usual χ2− or

χ̄2−asymptotic of twice the log-likelihood ratio does not hold. Let us, for example, consider

H : m = 1 against K : m = 2 in a mixture model, then we have

ΘH = {ϑ = (π1, θ1, θ2)|π1(1 − π1)(θ1 − θ2) = 0}

such that H is fulfilled if π1 ∈ {0, 1}, which is on the boundary, or if θ1 = θ2. Especially

for ϑ1 = (1, θ1, θ), ϑ2 = (0, θ, θ1), ϑ3 = (π, θ1, θ1) the law Pϑi
is the same for i = 1, 2, 3 for

all θ ∈ Θ, π ∈ [0, 1]. Also, the geometry of

ΘH =
( {0, 1} × Θ2

) ∪ (
[0, 1] × {(θ, θ)|θ ∈ Θ} )

indicates the nonregularity of the problem. However, as illustrated by Chen (1995) a main

reason for the nonregular behavior of the LRT, when testing for example m = 1, is that

the Fisher information is typically degenerated at ϑ ∈ ΘH . Chen (1995) analyzes the

one-parametric model

gθ(x) =
2

3
f−θ(x) +

1

3
f2θ(x)

with fθ ∈ {θ ∈ Θ ⊂ R}. He showed that for θ0 = 0, which corresponds to homogeneity,

the MLE exhibits only a rate of n−1/4, because the Fisher information is zero at θ0 = 0,

although {gθ}θ∈Θ forms an identifiable, smooth family. In general, Chen (1995) deduced

that n−1/4 is the typical rate when estimating in overfitted mixture models, i.e. m > m0.

Despite these difficulties, the asymptotic behavior of the LRT for testing for the number of

states, especially for homogeneity, was investigated among others by Chen and Chen (2001),

Azäıs et al. (2009) for mixtures, Gassiat and Keribin (2000) for HMMs, Zhu and Zhang

(2004) for switching regression models and Cho and White (2007) for autoregressive models
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with Markovian switch. All these results show fairly complicated asymptotic distributions

of the LRT usually given by the distribution of the supremum of a Gaussian process,

which may depend on the true parameter value ϑ0. In some cases the LRT even diverges

to infinity. Hence evaluation of the asymptotic distribution and its quantiles is demanding

(if possible). It is frequently advocated to use some bootstrap procedures to access this

problem (cf. Zhu and Zhang, 2004; Cho and White, 2007).

A more accessible alternative to the LRT is proposed by Chen et al. (2001, 2004) defining

a modified likelihood for a model with m components by

L̃(m)
n (ϑ) = L(m)

n (ϑ) + Cm

m∑
k=1

log πk(ϑ).

The additional penalty term ensures that the maximizer of the modified log-likelihood

(MMLE) has weights π̃k that are bounded away from zero, such that the estimated mixture

has no degenerated components. Chen et al. (2001, 2004) show that when testing m = 1

or m = 2 in mixture models against bigger models, the likelihood ratio evaluated at the

MMLE rather then at the MLE exhibits an asymptotic distribution of the simple χ̄2−type,

if Θ ⊂ R.

In the next section we will present the results for testing based on the modified log-

likelihood by Chen et al. (2001, 2004). In the subsequent sections we will show how

this results can be used to tackle the similar testing problems for HMMs and switching

regression models.

Remark 3.1. As pointed out by Frühwirth-Schnatter (2006) model selection and testing

relies on the correct specification of the parametric class {fθ} for the sdfs. In our view the

question of robustness against misspecifications is although of practical relevance somehow

misleading, since the specification of the correct number of components m makes sense

only relative to the prespecified family. In real data examples one observes that the choice

of the parametric family can influence the number of chosen components drastically, as

an extreme case one may imagine that the family itself is formed by mixtures with m′

components.

3.1 Testing for the number of components in a finite

mixture model

In this section we discuss the results for testing based on the modified log-likelihood by

Chen et al. (2001, 2004) for the hypothesis of homogeneity (m = 1) and the hypothesis of

two components in mixture models.
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3.1.1 Testing for homogeneity in a finite mixture model

As already mentioned the testing problem for homogeneity in a finite mixture model has

been received much interest from many authors, especially the behavior of the LRT, which

is shown to have a nonstandard asymptotic distribution, not χ̄2-type.

Exemplarily, we cite the result from Chen and Chen (2001), who consider testing

H : π1(1 − π1)(θ1 − θ2) = 0 against K : π1 ∈ [0, 1], θ1, θ2 ∈ Θ (3.1)

and derive the asymptotic distribution of the LRT in the particular case of a one-parametric

family Θ ⊂ R
1, with Θ compact and θ0 interior point of Θ.

Chen and Chen (2001) and also Chen et al. (2001) require the following regularity condi-

tions on the family {fθ}θ and on the quantities

Z1
i (θ) =

fθ(Yi) − fθ0(Yi)

(θ − θ0)fθ0(Yi)
, θ �= θ0 and Z1

i (θ0) =
f ′
θ0

(Yi)

fθ0(Yi)
,

Z2
i (θ) =

Z1
i (θ) − Z1

i (θ0)

(θ − θ0)
, θ �= θ0 and Z2

i (θ0) = Z1
i
′
(θ0)

where the prime indicates the derivative w.r.t. θ.

Assumption 3.1 (Wald-type integrability condition). Let E0 [|log fθ0(Yi)|] <∞, and there
exists ε > 0 such that, for each θ, f(y; θ, ε) := 1 + sup|θ−θ′|≤ε fθ′(y) is measurable and
E0 [log f(Yi; θ, ε)] <∞.

Assumption 3.2 (Smoothness). The support of fθ(y) does not depend on θ and fθ(y) is
two times continuously differentiable w.r.t. θ ⊂ Θ. The derivatives are jointly continuous
in y and θ.

Assumption 3.3 (Strong identifiability). The family {f(y; θ) | θ ∈ Θ} is strong identifi-
able, i.e. for θ1 �= θ2

2∑
k=1

(
akfθk

(y) + bkf
′
θk

(y) + ckf
′′
θk

(y)
)

= 0

for all y implies ak = bk = ck = 0 for k = 1, 2.

Assumption 3.4 (Uniform boundedness). There exists an integrable function g and δ > 0

such that |Z1
i (θ)|4+δ ≤ g(Yi) and

∣∣Z1
i
′
(θ)

∣∣3 ≤ g(Yi) for all θ.

Assumption 3.5 (Tightness). The processes n−1/2
∑

i Z
1
i (θ), n

−1/2
∑

i Z
1
i
′
(θ) as well as

n−1/2
∑

i Z
2
i (θ) and n−1/2

∑
i Z

2
i
′
(θ) are tight.
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For a discussion of the assumptions see Chen and Chen (2001) and the related working

paper. Note that for commonly used families as the binomial or the Poisson family the

conditions are fulfilled, also for normal density with fixed variance σ2, while the family of

all normal densities is not strongly identifiable.

Chen and Chen (2001) derive the following theorem:

Theorem 3.1. Suppose that Assumptions 3.1 – 3.5 hold and that fθ0(y) is the density of

the true null distribution of (Yi)i. Then

2
(

sup
ϑ∈Θ̄K

L(2)
n (ϑ) − sup

θ∈Θ
L(1)
n (θ)

) L−→ (sup
θ∈Θ

W+(θ))2

where Θ̄K = [0, 1] × Θ2 and W+ is the positive part of a standard Gaussian process with

correlation function

ρ(θ, θ′) = Corr(W1(θ),W1(θ
′))

with W1(θ) = Z2
1(θ) − (E[Z1

1(θ0)Z
2
1(θ)]/E[(Z1

1(θ0))
2])Z1

1(θ0).

For the proof see Chen and Chen (2001). Although this theorem is of primary theoretical

interest, the evaluation of the asymptotic distributions and hence the application of the

LRT is rather difficult. Moreover, the asymptotic distribution depends on the true param-

eter θ0 (if Z2
1(θ) and Z1

1(θ0) are correlated) and on the parameter space Θ, especially on

its magnitude. Clearly, Theorem 3.1 implies that 1
2
χ2

0 + 1
2
χ2

1 serves as an asymptotic lower

bound for the LRT, but applying that lower bound would lead to a liberal test, which is

usually undesirable.

A modified LRT to test for homogeneity

As an alternative, Chen et al. (2001) show how one can test (3.1) via a modified log-

likelihood function:

L̃(2)
n (ϑ) = L(2)

n (ϑ) − pen(π1(ϑ))

where L
(2)
n denotes the ordinary log-likelihood for a mixture with two components (see

(1.2)) and a penalty pen(π1). The penalty function should vanish for π1 = 1/2 and tend

to infinity, if π1 approaches the bounds of [0, 1] to penalize degenerated components. A

common choice is

pen(π1(ϑ)) = −C log 4π1(ϑ)(1 − π1(ϑ))

with some positive constant C. Based L̃n the modified likelihood ratio test (MLRT) to

test (3.1) with the penalty function chosen as suggested above is then formed as

Tn = 2
(

sup
ϑ∈Θ̄K

L̃(2)
n (ϑ) − sup

θ∈Θ
L(1)
n (θ)

)
.
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Chen et al. (2001) show that the MLRT in contrast to the ordinary LRT follows a simple

χ̄2-distribution under the null hypothesis:

Theorem 3.2. Suppose that Assumptions 3.1 – 3.5 hold and that the density of the true

null distribution of (Yi)i is given by fθ0(y), i.e. just one component. Then

Tn
L−→ 1

2
χ2

0 +
1

2
χ2

1. (3.2)

For the proof see Chen et al. (2001) and the related technical report. A key observation

in the proof of Theorem 3.2 is that for the MMLE ϑ̂ = (π̂1, θ̂1, θ̂2) = arg maxϑ L̃
(2)
n (ϑ) the

quantities

π̂1(θ̂1 − θ0) + (1 − π̂1)(θ̂2 − θ0) and π̂1(θ̂1 − θ0)
2 + (1 − π̂1)(θ̂2 − θ0)

2

are under the hypothesis both of the order n−1/2, which implies θ̂k − θ0 = Op(n
−1/4) for

k = 1, 2. This coincides with the results of Chen (1995) where ML-estimation in mixtures

with too many components is considered. Chen et al. (2001) also show some local optimality

result for the MLRT by considering local alternatives in a n−1/4-neighborhood of θ0.

Remark 3.2. Simulations show that the asymptotic distribution from Theorem 3.2 ap-

proximates the finite sample distribution of Tn under the null hypothesis moderately well.

Note that for the testing problem

H : π1 = 1/2, θ1 = θ2 against K ′ : π1 = 1/2, θ1, θ2 ∈ Θ,

where the weight π1 is fixed at 1/2 the LRT (which coincides with the MLRT here) also

follows asymptotically the distribution (3.2). For this hypothesis the asymptotic distri-

bution approximates the finite sample distribution satisfactorily. However, when testing

H against K ′ rather than against K the power decreases. By proposing a testing proce-

dure based on the EM-principle Li et al. (2009) develop an EM-test that has the same

asymptotic distribution under the hypothesis. It provides a good approximation under the

hypothesis and possesses a power comparable to the MLRT.

Remark 3.3. A serious lack of the results formulated in Theorem 3.1 and 3.2 is that the

explicit asymptotic distributions are only valid for one parametric families, i.e. Θ ⊂ R. For

many applications this assumption is met, for example for Poisson, binomial or exponential

distributions. But for many other applications it appears to restrictive, e.g. location-scale

models with unknown mean and variance. For finite mixtures the notion of an additional

structural parameter, which is unknown, but equal in all components, appears natural
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and useful. Chen et al. (2008) provide some results also for this model, which is also

closely related to switching regression models with switching intercept (cf. Section 3.3).

More general results of the behavior of the LRT for mixture with and without structural

parameter are given by Azäıs et al. (2009) and also the paper by Zhu and Zhang (2004)

implies asymptotic results for both, the LRT and the MLRT.

3.1.2 Testing for two components in a finite mixture model

Although testing for homogeneity is the most relevant testing problem for finite mixture

models, it is further of interest to test whether the latent distribution only has two compo-

nents or more than two components, for example, when population heterogeneity is evident

or has already been established. Indeed, two components often correspond to two contrast

levels, which may have a straight interpretation, whereas more than two components ex-

press a whole range of possibilities and indicate a more complex structure.

For notational convenience we introduce the following notation of distributions with m

support points on Θ ⊂ R:

Mm =
{
G(θ) =

m∑
k=1

πkI{θk≤θ} : θ1 ≤ . . . ≤ θm,
m∑
k=1

πk = 1, πk ≥ 0
}

denote the set of all m-point distributions on Θ, and let M = ∪m≥2Mm. For G ∈ Mm

with parameters (π1(G), . . . , πm(G), θ1(G), . . . , θm(G)) we let fmix(y;G) denote the mixing

density

fmix(y;G) =

∫
f(y; θ)dG(θ) = π1(G)f(y; θ1(G)) + . . .+ πm(G)f(y; θm(G)).

In the following we may write πk, θk instead of πk(G), θk(G) to keep the notation handy.

Chen et al. (2004) investigate testing for two components, i.e. testing

H : G0 ∈ M2 against K : G0 ∈ M \ M2. (3.3)

A modified LRT to test for two components

Similarly to the test for homogeneity (see above) Chen et al. (2004) bypass the analysis of

LRT by proposing an MLRT based on a modified likelihood function

L̃(m)
n (G) = L(m)

n (G) − pen(G)
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with the ordinary log-likelihood function

L(m)
n (G) =

n∑
i=1

log fmix

(
Yi;G

)
and a penalty

pen(G) = −Cm
m∑
k=1

log
(
πk(G)

)
,

for G ∈ Mm with a positive constant Cm > 0. Again the penalty pen(G) tends to infinity,

if πk(G) approaches zero for some k such that degenerated components are penalized.

We denote the MMLE, i.e. the maximizer of L̃
(m)
n ( · ), as Ĝ(m). Based on the MMLEs the

MLRT statistic for testing (3.3) is

Tmod
n = 2

(
L(m)
n (Ĝ(m)) − L(2)

n (Ĝ(2))
)
, (3.4)

for some choice of m, where L
(m)
n and L

(2)
n denote the ordinary likelihood functions. At

a first glance this is in contrast to the MLRT for homogeneity, where the modified log-

likelihood is not only used to determine Ĝ(2) but also is part of the test statistic. In

case of Theorem 3.2 one may replace L̃n by Ln, since the penalty tends to zero under

the homogeneity hypothesis. This is not the case for the penalty introduced above, since

pen(G(m)) ≥ Cmm logm.

In the remainder of this section we present the asymptotic results on Tmod
n by Chen et al.

(2004) who established

Tmod
n

L→ (
1

2
− p)χ2

0 +
1

2
χ2

1 + p χ2
2,

for some p ∈ [0, 1/2].

Regularity conditions

In the same spirit as in the previous section we define the following quantities

Z1
ik(θ) =

fθ(Yi) − fθ0k
(Yi)

fmix

(
Yi;G0

) , for k = 1, 2

Z l
i(θ) =

dl

dθlfθ(Yi)

fmix

(
Yi;G0

) , for l = 1, 2, 3

where G0 denotes the true two component mixing distribution

G0(θ) = π0 I{θ01≤θ} + (1 − π0)I{θ02≤θ}.
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For G ∈ Mm we define Z1
ik(G) =

∫
Z1
ik(θ)dG(θ). Similar regularity conditions as above are

used by Chen et al. (2004). Essentially, the assumptions reformulate Assumptions 3.1-3.5

in terms of a true underlying distribution fmix

(
y;G0

)
rather than fθ0(y). In addition, one

requires the third derivative of the kernel function fθ(y).

Assumption 3.1’ (Wald-type integrability condition) Let E0 [|log fmix(Yi;G0)|] <∞ and

there exists ε > 0 such that, for each G, fmix(y;G, ε) := 1 + sup|Q−G|≤ε fmix(y;Q) is

measurable and E0 [log fmix(Yi;G, ε)] <∞.

Assumption 3.2’ (Smoothness) The support of fθ(y) does not depend on θ and fθ(y) is

three times continuously differentiable w.r.t. θ ⊂ Θ. The derivatives are jointly continuous

in y and θ.

Assumption 3.3’ (Strong identifiability) Same as Assumption 3.3.

Assumption 3.4’ (Uniform boundedness) There exists an integrable function g and δ > 0

such that |Z1
ik(θ)|4+δ ≤ g(Yi) and

∣∣Z l
i(θ)

∣∣3 ≤ g(Yi) for all θ, for k = 1, 2; l = 1, 2, 3.

Assumption 3.5’ (Tightness) The processes n−1/2
∑

i Z
1
ik(θ), n

−1/2
∑

i Z
l
i(θ) are tight for

k = 1, 2; l = 1, 2, 3.

Asymptotic analysis

For the analysis of G(m) we introduce a representation of the form

G(m) = π̂Ĝ
(m)
1 + (1 − π̂)Ĝ

(m)
2

with π̂ = Ĝ(m)(θmid) and Ĝ
(m)
1 (θmid) = 1, Ĝ

(m)
2 (θmid) = 0, θmid = 1/2(θ01 + θ02), i.e. we

collect all support points θ of Ĝ(m) with θ ≤ θmid and the corresponding weights in Ĝ
(m)
1

and the remaining ones in Ĝ
(m)
2 .

Using this representation consistency of the MMLE Ĝ can be formulated as follows

π̂
P−→ π0 := π1(G0), |Ĝk(θ)

(m) − I{θ0k≤θ}| P−→ 0.

In the working paper by Chen et al. (2004) consistency of Ĝ is proved based on the fact

that the probability of Ĝ to possess degenerated components tends to zero due to the

structure of the penalty.

Before starting the analysis of the MLRT we note that test statistic Tmod
n is defined for

a specified number of components m under the alternative. Chen et al. (2004) show that

if one chooses m ≥ m∗ := max {�1.5/π0� , �1.5/(1 − π0)� , 4} this ensures that Ĝ
(m)
k for
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k = 1, 2 is not degenerated to a single point distribution, which is necessary to obtain the

asymptotic χ̄2- distribution. Hence we assume that in the definition of Tmod
n m is chosen

appropriately.

Since the asymptotic analysis of Tmod
n is also the cornerstone for the results of the Sections

3.2.3 and 3.3.2 we discuss it in some detail here. As standard for the LRT we start with

the decompose

Tmod
n = Tmod

1n − Tmod
0n = 2

(
L(m)
n (Ĝ(m)) − L(2)

n (G0)
)− 2

(
L(2)
n (Ĝ(2)) − L(2)

n (G0)
)
.

We begin our analysis with Tmod
1n and obtain

Tmod
1n = 2

∑
i

log(1 + δi) ≤ 2
∑
i

δi −
∑
i

δ2
i + 2/3

∑
i

δ3
i

for δi =
(
fmix

(
Yi; Ĝ

(m)
) − fmix

(
Yi;G0

))
/fmix

(
Yi;G0

)
. We may omit the index m in this

part, i.e. Ĝ(m) = Ĝ. The crucial observation is that

δi = (π̂ − π0)Δi + π̂Z1
i1(Ĝ1) + (1 − π̂)Z1

i2(Ĝ2) with Δi = Z1
i2(θ) − Z1

i1(θ),

such that one can basically apply similar arguments on Z1
ik(Ĝk) for each k = 1, 2 as those

from the homogeneity case (Chen et al., 2001).

Expanding Z1
ik(θ) yields for k = 1, 2 and i = 1, . . . , n

Z1
ik(θ) = (θ − θ0k)Z

1
i (θ0k) + (θ − θ0k)

2/2 Z2
i (θ0k) + εik (3.5)

and

Z1
ik(Ĝk) = m1k(Ĝk)Z

1
i (θ0k) +m2k(Ĝk)/2 Z

2
i (θ0k) + ε̃ik (3.6)

with mlk(G) =
∫

(θ − θ0k)
ldG(θ). Hence∑

i

δi =
∑
i

(π̂ − π0)Δi + π̂m11(Ĝ1)Z
1
i (θ01) + (1 − π̂)m12(Ĝ2)Z

1
i (θ02)

+ π̂m21(Ĝ1)/2 Z
2
i (θ01) + (1 − π̂)m22(Ĝ2)/2 Z

2
i (θ02) + ε̃1n

= t(Ĝ)b + ε̃1n

for

b =
∑
i

bi =
∑
i

(Δi, Z
1
i (θ01), Z

1
i (θ02), Z

2
i (θ01), Z

2
i (θ02))

T . (3.7)

and

t(G) =
(
π(G) − π0, π0m11(G1), (1 − π0)m12(G2), π0m21(G1)/2, (1 − π0)m22(G2)/2

)T
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with G = π(G)G1 + (1 − π(G))G2 partitioned as above. Similarly we get∑
δ2
i = t(Ĝ)T B t(Ĝ) + ε̃2n

with B =
∑

i bib
T
i . Chen et al. (2004) prove under the Assumptions 3.1’ – 3.5’ the asymp-

totic neglectability ε̃1n, ε̃2n and other higher order terms, and conclude

Tmod
1n ≤ sup

G∈Mm

(
2 t(G)Tb − t(G)T B t(G)

)
+ oP (1). (3.8)

Since

sup
G∈Mm

(
2 t(G)Tb − t(G)T B t(G)

)
= sup

t∈C

(
2 tTb − tT B t

)
with C = R

3 × [0,∞) × [0,∞), one has simply the supremum of a quadratic form over

a closed cone C, which is attained by some value t∗ ∈ C. Examine t as a function

of G yields that for all t∗ ∈ C there exists G∗ such that t∗ = t(G∗). In particular,

G∗ = π(G∗)G∗
1 + (1 − π(G∗))G∗

2 must satisfy

π(G∗) = t∗1 + π0, m1k(G
∗
k) = t∗k+1/π0, m2k(G

∗
k) = 2t∗k+3/π0 ≥ 0

for k = 1, 2, which is possible for all t∗ ∈ C, if one chooses G∗
1 and G∗

2 in the way that they

possess at least two support points. Hence we have

sup
G∈Mm

(
2 t(G)Tb − t(G)T B t(G)

)
= 2 t(G∗)Tb − t(G∗)T B t(G∗) (3.9)

and by the expansion above

Tmod
1n ≥ 2

(
L(m)
n (G∗) − L(2)

n (G0)
)

= 2 t(G∗)Tb − t(G∗)T B t(G∗) + oP (1)

Combining this with (3.8) results in

Tmod
1n = sup

G∈Mm

(
2 t(G)Tb − t(G)T B t(G)

)
+ oP (1). (3.10)

Note that, this implies that m1k(G
∗) and m2k(G

∗) are of the same order (by the tightness

assumption this is n−1/2), and hence |G∗−G0| = OP (n−1/4). This corresponds the rates in

the homogeneity case discussed Section 3.1.1. For the estimation under the hypothesis, Ĝ
(2)
1

and Ĝ
(2)
2 are both single point distributions which implies that (m1k(Ĝ

(2)
k ))2 = m2k(Ĝ

(2)
k ) ,

yielding m2k(Ĝ
(2)
k ) = op(m1k(Ĝ

(2)
k )) for k = 1, 2 and hence

Tmod
0n = sup

G∈M2

(
2 t(G)Tb − t(G)T B t(G)

)
+ oP (1)

= sup
t1∈R3

(
2 tT1 b1 − tT1 B11 t1

)
+ oP (1) = bT1B11

−1bT1 + oP (1)
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for bT = (bT1 ,b
T
2 ), tT = (tT1 , t

T
2 ) with b1, t1 ∈ R

3 and

B =

(
B11 B12

B21 B22

)
, B11 ∈ R

3×3.

Assumption 3.3’ ensures that B is invertible (at least for large n), hence orthogonalization

leads to

Tmod
1n = bT1B11

−1bT1 + sup
t2∈[0,∞)×[0,∞)

(
2 tT2 b̃2 − tT2 B̃22 t2

)
+ oP (1)

with b̃T2 = bT2 − bT1B11
−1B12 and B̃22 = B22 − B21B11

−1B12, where t2 is restricted to

positive values.

Therefore we have

Tmod
n = sup

t2∈[0,∞)×[0,∞)

(
2 tT2 b̃2 − tT2 B̃22 t2

)
+ oP (1) (3.11)

and the following proposition completes the analysis.

Proposition 3.1. Suppose that Assumptions 3.1’ – 3.5’ hold and that true distribution of

(Yi)i is a two component finite mixture, i.e. G0 ∈ M2. Then

sup
t2∈[0,∞)×[0,∞)

(
2 tT2 b̃2 − tT2 B̃22 t2

) L→ (
1

2
− p)χ2

0 +
1

2
χ2

1 + p χ2
2,

where p =
(
cos−1 ρ

)
/(2π) and ρ is the correlation coefficient in the asymptotic covariance

matrix Σ̃ of n−1/2b̃2.

The proposition is proved slightly different than in Chen et al. (2004) in Sec. 3.4. We can

now derive the asymptotic distribution of Tmod
n and formulate the theorem by Chen et al.

(2004).

Theorem 3.3. Suppose that Assumptions 3.1’ – 3.5’ hold and that true distribution of

(Yi)i is a two component finite mixture. Further assume that m in the definition of Tmod
n

in (3.4) satisfies m ≥ m∗ := max {�1.5/π0� , �1.5/(1 − π0)� , 4}. Then

Tmod
n

L→ (
1

2
− p)χ2

0 +
1

2
χ2

1 + p χ2
2,

where p =
(
cos−1 ρ

)
/(2π) and ρ is the correlation coefficient in the covariance matrix Σ̃.

Remark 3.4 (Choice of m and C2, Cm). Chen et al. (2001, 2004) make several suggestions,

how to choose m and the constants C2, Cm to form the MLRT. Especially, Chen et al.

(2004) advocate an data-adaptive choice of

m ≥ m̂ = max
{⌊

1.5/π1(Ĝ
(2))

⌋
,
⌊
1.5/(1 − π1(Ĝ

(2)))
⌋
, 4
}
.
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Intuitively, a greater value of m should increase the value of Tmod
n , but it neither affects the

asymptotic behavior of Tmod
n (by the previous theorem) nor simulation studies indicate a big

difference, as long as m is not too small. For m < m∗, Ĝ
(m)
k for k = 1, 2 may degenerate to

a single point which does affect the asymptotic distribution of Tmod
n such that the resulting

test is conservative. Concerning the choice of C2, Cm simulation studies do not indicate

a strong influence of those constants. In general, increasing C yields a stronger effect of

the penalization on the estimates and pushes π
(m)
k towards uniform weights 1/m. One

may expect that this should result in better approximations under the hypothesis, but in

a decrease of power. A common choice is Cm = C2 = 1, but one use the constants to

adjust the level of the test under the hypothesis for a particular model verified by means

of simulation studies.

Remark 3.5. To apply the asymptotic distribution in Theorem 3.3, i.e. to determine the

critical region of the test, one needs the correlation coefficient ρ. The standard estimator

ρ̂ is the correlation coefficient of B̃22. As it is consistent, a test based on the χ̄2-mixture

with p̂ =
(
cos−1 ρ̂

)
/(2π) keeps the prespecified level asymptotically.

3.2 Testing for the number of states in a hidden Markov

model

Testing problems concerning the number of components in a finite mixture model are

similarly present in the HMM context, where one wishes to specify the number of hidden

states correctly. For testing m = 1 against m = 2 for an HMM, Gassiat and Keribin

(2000) show that the LRT statistic diverges to infinity. Their result is based on studying

the subproblem, where the parameters of the sdfs are fixed, and investigates a family

of Gaussian processes Vη, η ∈ (0, 1), which are smaller than the LRT, but unbounded

if η approaches zero. This result is rather remarkable, since the divergence of the LRT

takes place in a finite-dimensional setup although the standard regularity and compactness

assumptions are fulfilled. However, simulations indicate that the speed of convergence is

pretty slow. Although the work by Gassiat and Keribin (2000) benefits from the fact that

for m = 1, the (Yi)i are simply an i.i.d. sequence from fθ1(y), their result requires a lot of

technical effort.

The simplest non-trivial (i.e. dependent) HMM has to have at least two states. Therefore,

testing for m = 2 against m ≥ 3 states for an HMM is the problem of primary practical

interest. For this problem the LRT has not been investigated so far. The results of

Gassiat and Keribin (2000) are not very encouraging, but they indicate the severity of the
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problem. Due to the lack of asymptotic theory Rydén et al. (1998) used a bootstrap version

of the LRT for this problem. However, bootstrapping in this context is computationally

demanding, since it requires repeated maximization of the full log-likelihood function of

an HMM for more than two states.

In this section, we investigate how the MLRT of Chen et al. (2001, 2004) can be extended

to HMMs. For mixture models the MLRT is proved to have a relatively simple limit

theory, and is computationally easy to handle, since it does no require bootstrapping of

the asymptotic distribution. We apply these methods to HMMs hoping (and proving) that

the desirable properties are preserved.

Note, that the marginal distribution of observations (Yi)i from an HMM is given by the

finite mixture fmix(y;G) where the support points of G correspond to the parameters of the

sdfs and the weights to the stationary distribution π. In particular, when one assumes that

the parameters of the sdfs are distinct, the number of hidden states m coincides naturally

with the number of components of the marginal mixture distribution. Hence, testing for

the number of components of the marginal mixture is equivalent to testing for the number

of states of the underlying latent process.

In general, estimation based on a quasi likelihood function formed by the marginal mixture

distribution, also called likelihood function under independence assumption, was proposed

by Lindgren (1978) for HMMs and switching regression models. As an illustration we first

discuss based on Lindgren’s results how to test regular hypotheses on parameters of the

marginal mixture distribution of the HMM via a quasi LRT in Section 3.2.1.

It turns out that this test statistic is not asymptotically χ2-distributed in general, but

rather requires an adjustment for the dependence structure of the HMM. This is not

the case when applying the MLRT for testing for homogeneity in an HMM (see Section

3.2.2) for the simple reason that under the hypothesis m = 1 no dependency is present.

Surprisingly, as shown in Section 3.2.3, the MLRT for m = 2 against m ≥ 3 in an HMM

does also not require an adjustment. Although the observations exhibit dependency under

the hypothesis m = 2, the limit distribution of the MLRT is the same as for independent

mixtures. We may point out that this makes its use for HMMs particularly simple and

attractive. Since the evaluation of the MMLE is much simpler and hence much faster than

for the MLE based on the full log-likelihood function of the HMM, inference based on the

marginal mixture distribution of the HMM is also computationally attractive.

The section is concluded by simulation studies, where the theoretical results are illustrated.

In particular, we verify empirically that the performance of the MLRT for testing m = 2

is hardly influenced by different forms of the transition matrix, as long as its stationary

distribution remains the same. Finally we give two empirical illustrations, one for the series
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of fetal lamb movements analyzed in Leroux and Puterman (1992), and the other to the

series of log-returns of the S&P 500 (cf. Rydén et al., 1998).

3.2.1 The LRT under independence assumption

The density of marginal distribution of the observations from an HMM (Yi)i is given by

the density of the finite mixture

fmix(y;π1, . . . , πm, θ1, . . . , θm) = π1fθ1(y) + · · · + πmfθm
(y)

where π is the stationary distribution of the transition matrix. For estimation based on

fmix(y;π1, . . . , πm, θ1, . . . , θm) the parameter of interest contains the entries of the station-

ary distribution rather than the entries of the transition matrix. We denote a suitable

parametrization by ω with πk(ω) and θk(ω) for 1 ≤ k ≤ m and assume ω ∈ Ω ⊂ R
d̄, and

write fmix(y;ω) = fmix(y;π1, . . . , πm, θ1, . . . , θm). Based on the marginal density one forms

the log-likelihood function under independence assumption

LIn(ω) =
n∑
i=1

log fmix(Yi;ω), (3.12)

and defines the maximum likelihood estimator under independence assumption (MLEI) by

ω̂ = arg max
ω∈Ω

LIn(ω).

Lindgren (1978) proposes this estimator for the stationary distribution and the parameters

of the sdfs for HMMs and phrases a CLT for those. With the matrices

Σ0 = E
[
h(Y1;ω0)h(Y1;ω0)

T
]

Cov0 = Σ0 +
∑
j≥2

E
[
h(Y1;ω0)h(Yj;ω0)

T + h(Yj;ω0)h(Y1;ω0)
T
]
,

where h(y;ω) =
(
Dω log fmix(y;ω)

)T
, we can formulate the following theorem in the spirit

of Lindgren (1978).

Theorem 3.4. Suppose that we have an HMM with ergodic regime fulfilling Assumptions

2.1’, 2.2’, 2.3, rephrased for the parametrization ω. Assume that ω0 is an interior point of

Ω compact. Then, if the MLEI is strongly consistent and Σ0 nonsingular, we have

√
n
(
ω̂ − ω0

) L→ N (
0,Σ−1

0 Cov0Σ
−1
0

)
. (3.13)
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An outline of the proof is given in Section 3.4. As we require the MLEI to be consistent, we

may note that this holds under Wald-type conditions, as a repetition of the arguments in

Rydén (1994) shows. In this paper Rydén (1994) extends Lindgren’s approach by assuming

independence only between blocks of observations.

Based on the MLEIs one can test hypotheses about ω via a LRT under independence

assumption (LRTI). We now briefly discuss the LRTI for regular hypotheses in order to

illustrate that its asymptotic distribution is not given by a simple χ2-distribution but is in

general significantly influenced by the dependence structure of the HMM. Note that since

π is uniquely determined by the transition matrix
(
αjk

)
1≤j,k≤m

, hypotheses on ω can in

principle be reformulated into hypotheses on the original parameters of the HMM, and

hence be tested by the usual LRT for HMMs (cf. Sections 2.1.1, 2.1.2 and Example 2.4).

However, as seen in Example 2.4 the expression of π in terms of the entries of the transition

matrix is highly nonlinear for m ≥ 3, and thus the ordinary LRT becomes difficult to use

in such situations. Hence, for m ≥ 3 the LRTI is also an attractive procedure to test

hypotheses on the stationary distribution of an HMM, e.g. testing for π1 = . . . = πm = 1/m.

More precisely, suppose that we want to test a regular r-dimensional restriction

Hs : s(ω0) = 0 against Ks : s(ω0) �= 0,

where s : R
d̄ → R

r, r ≤ d̄, is a differentiable map with Jacobian Dωs(ω0) of full rank r at

ω0. Let

T In = 2
(
sup
ω∈Ω

LIn(ω) − sup
{ω|s(ω)=0}

LIn(ω)
)

be the LRTI statistic. In order to derive the asymptotic distribution of T In , reparametrize

Hs (at least locally around ω0) as the image of a differentiable mapping ϕ : R
d̄−r ⊃ U → R

d̄,

i.e. s(ϕ(t)) = 0, and these are the only solutions locally around ω0. Let S0 = Dtϕ(t0),

where ϕ(t0) = ω0.

Theorem 3.5. Suppose that we have an HMM with ergodic regime fulfilling Assumptions

2.1’, 2.2’, 2.3, rephrased for the parametrization ω and t. Assume that ω0 = ϕ(t0) is an

interior point of Ω compact. Then, if the restricted MLEI as well as the unrestricted MLEI

are strongly consistent and Σ0 nonsingular and S0 of full rank we have

T In
L→ ZTCov

1/2
0

(
Σ−1

0 − S0(S
T
0 Σ0S0)

−1ST0

)
Cov

1/2
0 Z, (3.14)

where Z ∼ N(0, Id̄×d̄).
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Once Theorem 3.4 and simultaneously an CLT for the score and an LLN for the Fisher

information are established, deriving the asymptotic distribution of T In follows from a

standard argument. For details see Sec. 3.4.

In principle, one may also use the LRTI to test hypotheses on the stationary distribution

involving the boundary of the parameter space as in Example 2.4.

Remark 3.6. The quadratic form which occurs as asymptotic distribution in (3.14) is a

linear combination of independent χ2
1 distributed variables, where the weights are given

by the eigenvalues of the matrix Cov
1/2
0

(
Σ−1

0 − S0(S
T
0 Σ0S0)

−1ST0

)
Cov

1/2
0 . If the observa-

tion were independently drawn from a finite mixture, this matrix would be an orthogonal

projection, since in that case Cov0 = Σ0. In general, Σ0 and Cov0 differ due to the depen-

dence structure of an HMM and hence the matrix is no orthogonal projection. Hence, the

asymptotic distribution of the LRTI will in general not be a simple χ2-distribution.

For an application of (3.14), these eigenvalues have to be estimated, by consistently esti-

mating all component matrices Cov0,Σ0 and S0 and using the fact that the eigenvalues

depend continuously on the entries.

Remark 3.7. As an alternative to the LRTI one can also use a Wald-type statistic as

follows. Suppose that Σ0 and Cov0 are non-singular, and let Σn and Ĉovn be consistent

estimates of Σ0 and Cov0, respectively. Then, under Hs and non-singularity of Σ0, one

shows by using the δ-method that

W I
n = ns(ω̂)T

(
Dωs(ω̂) Σ−1

n ĈovnΣ
−1
n

(
Dωs(ω̂)

)T)−1

s(ω̂)
L→ χ2

r. (3.15)

The Wald test and the LRTI will be less efficient than the LRT (based on the full-model

MLEs), and the usual LRT should thus be employed if possible. However, in the simulation

section we illustrate that the loss in power is pretty small, and hence that the tests under

independence assumption offer a reasonable, simple alternative.

3.2.2 Testing for homogeneity in an HMM

We briefly discuss testing for homogeneity using the MLRT approach (see Sec. 3.1.1) in

an HMM. This section is mainly motivated by questions raised at the GOCPS (Aachen,

2008) and the WCPS (Singapore, 2008) when presenting the paper by Dannemann and

Holzmann (2008c). The question is whether one can formulate the MLRT based on the

log-likelihood under independence assumption to test H : m = 1 against K : m = 2 in an

HMM, i.e.

H : α12α21(θ1 − θ2) = 0 against K : α12, α21 ∈ [0, 1], θ1, θ2 ∈ Θ. (3.16)
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The answer is positive, the MLRT from Chen et al. (2001) can be applied. Since under the

hypotheses in (3.1) and (3.16) the observations are simply i.i.d. with Yi ∼ fθ0 , Theorem

3.2 gives the asymptotic behavior of the MLRT under the null hypothesis. However, in

the case of HMMs one compares a very simple model with independent observations with

a much more complex model with a dependency structure. The result by Gassiat and

Keribin (2000) indicates theses model classes are quite different.

In the end the simple answer given above refers to the behavior of the MLRT under H

only. For a complete picture one has to analyze the behavior of of the MLRT under an

HMM belonging to the alternative, to see whether the dependency structure of the HMM

influences the test. In principle, one can also test (3.16) by statistical tools detecting

dependency, rather than using a method which ignores dependency by construction.

3.2.3 Testing for two states in an HMM

As argued at the beginning of this section testing for two states in an HMM is of major

interest, since a two-state HMM is the smallest non-trivial model. We now propose a test

for

H : m = 2 against K : m ≥ 3

in an HMM. To apply the MLRT from Chen et al. (2004) we assume that the parameters of

the sdfs are all distinct and one dimensional, i.e. Θ ⊂ R. Adopting the notation introduced

in Sec. 3.1.2 by denoting the true regime distribution of an HMM as G0 the testing problem

for two states is given by

H : G0 ∈ M2 against K : G0 ∈ M \ M2. (3.17)

With respect to this notation the ordinary log-likelihood under independence assumption

is given by L
I(m)
n (G) =

∑n
i=1 log fmix

(
Yi;G

)
and the modified log-likelihood under inde-

pendence assumption is defined as

L̃I(m)
n (G) = LI(m)

n (G) − pen(G)

with a penalty

pen(G) = −Cm
m∑
k=1

log
(
πk(G)

)
.

Analogous to the notion in Sec. 3.1.2 we denote the MMLE under independence assump-

tion, i.e. the maximizer of L̃
I(m)
n ( · ), as Ĝ(m). The MLRT statistic under independence

assumption for testing (3.17) is then formed by

Tmod
n = 2

(
LI(m)
n (Ĝ(m)) − LI(2)n (Ĝ(2))

)
, (3.18)
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Chen et al. (2004) show that under the hypothesis of a two-component mixture Tmod
n follows

asymptotically a χ̄2-mixture (cf. Theorem 3.3). Now we must investigate the asymptotic

behavior of Tmod
n under the hypothesis of a two-state (i.e. dependent) HMM.

Following the analysis by Chen et al. (2004) discussed in Sec. 3.1.2 we see that under the

Assumptions 3.1’ – 3.5’ the expansion

Tmod
n = sup

t2∈[0,∞)×[0,∞)

(
2 tT2 b̃2 − tT2 B̃22 t2

)
+ oP (1)

remains valid for the quantities b̃2, B̃22 defined in Sec. 3.1.2. For the final step Chen et al.

(2004) exploit the fact that the covariance matrix of the asymptotic normal distribution

of n−1/2b̃2 coincides with the limit of n−1B̃22 denoted as Σ̃. For independent data this is

obviously true, since b is in this case the sum of independent increments, i.e. E
[
bib

T
j

]
= 0

if 1 ≤ i �= j ≤ n. In our case these increments are dependent and hence n−1/2b̃2 is

asymptotically normally distributed with mean zero and covariance matrix

C̃ov = Σ̃ +
∞∑
i=2

E
[
b̃21b̃

T
2i + b̃2ib̃

T
21

]
.

with b̃T2i = bT2i − bT1iB̄
−1
11 B̄12, b

T
i = (bT1i, b

T
2i), b1 ∈ R

3 and B̄jk = E
[
bjibki

]
= limn n

−1Bjk for

1 ≤ j, k ≤ 2.

Surprisingly, for the asymptotic distribution of n−1/2b̃2 we indeed have Σ̃ = C̃ov, as stated

in the next proposition.

Proposition 3.2. Suppose that Assumptions 3.1’ – 3.5’ hold and that the true marginal

distribution of the HMM (Yi)i is a two-component finite mixture. Then we have

E
[
b̃21b̃

T
2i

]
= E

[
b̃2ib̃

T
21

]
= 0 for all i ≥ 2.

The proof is given in Sec. 3.4. The result is much in contrast to the relation of the matrices

Σ0 and Cov0 introduced in Section 3.2.1, as we shall illustrate in the simulation study in

Section 3.2.4. Proposition 3.2 implies that Tmod
n will have the same limit distribution as

for independent mixtures. In particular, analogously to Theorem 3.3 we have

Theorem 3.6. Suppose that Assumptions 3.1’ – 3.5’ hold and that the true marginal

distribution of the HMM (Yi)i is a two-component finite mixture. Further assume that m

in the definition of Tmod
n in (3.18) satisfies m ≥ m∗ := max {�1.5/π0

1� , �1.5/π0
2� , 4}. Then

Tmod
n

L→ (1

2
− p

)
χ2

0 +
1

2
χ2

1 + p χ2
2, (3.19)

where p =
(
cos−1 ρ

)
/(2π) and ρ is the correlation coefficient in the covariance matrix Σ̃.



3.2. Testing for the number of states in an HMM 71

After Proposition 3.2 is established the proof of the theorem follows the proof in Chen et al.

(2004), sketched in Sec. 3.1.2. Comments on the validity of the assumptions are passed in

a subsequent remark (and proved in Sec. 3.4). Clearly, the Remarks 3.4, 3.5 on the choice

of m and the constants C2, Cm as well as on estimation of the correlation coefficient ρ also

apply when the MLRT is used for testing for two states. In addition we should comment

how the Assumptions 3.1’ – 3.5’ could be verified in the context of HMMs

Remark 3.8. The Assumptions 3.1’ – 3.4’ are mainly concerned with the kernel functions

fθ( · ), so that their validity remains in the context of HMMs. Concerning the tightness of

the processes n−1/2
∑

i Z
1
ik(θ), n

−1/2
∑

i Z
l
i(θ) (Assumption 3.5’) Chen et al. (2004) argue

that for independent mixtures this is implied by Assumption 3.4’ by applying Theorem

12.3 in (Billingsley, 1968, p.95). This is also true for the HMM setup, which is proved in

Sec. 3.4.

3.2.4 Simulation experiments

Here we present some results of an simulation study of the tests proposed in the previous

sections in the HMM setup. For the maximization of the log-likelihood function (under

independence assumption) we use direct maximization via a Newton-type algorithm (cf.

Sec. 2.3.1).

The LRT under independence assumption

In this section we shall illustrate two aspects about the LRT under independence assump-

tion discussed in Sec. 3.2.1. First, the difference between Σ0 and Cov0 can be quite large

and the distribution of T In can be quite far from a χ2-distribution, even in a simple setting.

Second, we show that (at least in a particular example), the LRTI and the Wald test under

independence assumption have little loss in power when compared to the LRT based on

full-model MLEs discussed in Sec. 2.4. Thus, ignoring the dependence structure in the

test statistic need not result in a significant loss of power.

We start by suggesting estimators for the matrices Σ0 and Cov0, where Σ0 is estimated by

Σn = 1
n

∑n
i=1 h(Yi; ω̂)h(Yi; ω̂)T , and Cov0 by

Ĉovn = Σn +
J∑
j=1

n− j

n
Σn,j, Σn,j =

1

n− j

n−j∑
i=1

(
h(Yi; ω̂)h(Yi+j; ω̂)T +h(Yi+j; ω̂)h(Yi; ω̂)T

)
,

where J is small compared to n. Typically, the covariances decrease exponentially fast, so

a small number for J will suffice. In practice one can simply check for each j whether the

entries of Σn,j are small compared to Σn.
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We simulate from a stationary three-state Poisson HMM, where the means of the Poisson

sdfs are given by θ1 = 1, θ2 = 5 and θ3 = 9, and the transition matrix of the underlying

Markov chain is of the form (2.19). We examine testing the hypothesis H : π1 = π3. Under

H, we choose the entries in (2.19) as α = 0.4, β = 0.2, γ = 0.3 and δ = 0.6, yielding the

stationary distribution π1 = π3 = 0.25, π2 = 0.5. In the following, for simplicity we fix the

θs at their true values, and estimate the parameter ω = (π1, π3) only. First, we generate

estimates of Σ0 and Cov0 from a single sample of size 106, yielding for J = 8

Σn =

(
3.56 0.16

0.16 2.12

)
, Ĉovn =

(
8.13 −1.61

−1.61 2.74

)
, Pn =

(
1.34 −1.18

−1.18 1.03

)

where Pn = Ĉov
1/2

n

(
Σ−1
n − S0(S

T
0 ΣnS0)

−1ST0

)
Ĉov

1/2

n is an estimate of the matrix in the

quadratic form in (3.14) (here, S0 does not depend on ω). Thus, the matrices Σ0 and Cov0

apparently differ significantly. The matrix Pn is singular, its non-zero eigenvalue is equal

to 2.38. Hence, the asymptotic distribution of the LRTI is a scaled χ2
1–distribution with

scaling factor 2.38.

The distribution of the LRTI-statistic and the Wald-statistic was investigated for sample

size n = 500 with N = 10000 replications. Figure 3.1 shows the empirical cumulative

distribution functions. In both cases one can hardly visually distinguish between the

sample and the asymptotic distribution functions. However, one clearly observes that the

distribution of LRTI differs strongly from the standard χ2
1-distribution.
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Figure 3.1: Distribution of the LRTI-Statistic and of the Wald-Statistic (solid), the dotted

line (hardly visible) indicates the asymptotic distribution of the LRTI-Statistic and the

dashed line the χ2
1–distribution.
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Finally, we conduct a power comparison between the LRTI, the Wald test under indepen-

dence assumption and the LRT based on the full model MLEs. We again test the hypoth-

esis H : π1 = π3, and the parameters in (2.19) are taken as α1 = α0 + κ, β1 = β0 + κ,

γ1 = γ0 − κ and δ1 = δ0 − κ, where α0, . . . , δ0 are chosen as above, and for κ we use

κ = 0, 0.05, 0.1, 0.15, 0.25. For all tests, the asymptotic critical values are employed (in

case of the LRTI the critical value is estimated for each sample). The sample size was

taken as n = 500, and N = 10000 samples were used to estimate the power in each setting.

The results are displayed in Table 3.1. It turns out that at least in this specific scenario,

there is little loss in power when using the tests based on the MLEI.

Table 3.1: Simulated rejection rates of the LRT based on the MLE, LRTI and Wald test

based on MLEIs under the hypothesis (κ = 0) and under the alternative (κ > 0). The

model is a three-state HMM with means 1, 5 and 8. The transition matrix is of the form

(2.19) with α = 0.4 + κ, β = 0.2κ, γ = 0.3 − κ and δ = 0.6 − κ.

κ 0 0.05 0.1 0.15 0.25

π1 (true value) 0.25 0.276 0.300 0.323 0.377

π3 (true value) 0.25 0.226 0.200 0.169 0.078

Power LRT 0.052 0.135 0.381 0.717 0.994

Power LRTI 0.050 0.131 0.373 0.709 0.999

Power W I
n 0.047 0.121 0.351 0.683 0.997

Testing for homogeneity in HMMs

Here, we investigate the finite sample behavior of the test for homogeneity, i.e. m = 1

against m ≥ 2. As discussed in Section 3.2.2 we are mainly interest in the behavior under

an non-i.i.d. alternative. We consider the alternative a two-state HMM with sdfs from the

Poisson family. We examine the empirical levels under the hypothesis (θ1 = θ2 = 3) and

under two-state HMM with Poisson intensities θ1 = 3, θ2 = 5 and five different transition

matrices T1 - T5 (Table 3.2). We set C = 1.

Table 3.3 shows that the different transition matrices T1-T5 under the alternative do not

seem to have much influence of the power of the test. Especially for T1 - T3, where the

stationary distributions are the same the results every similar to each other. For T4 and

T5, where the weight π1 for one component is small the power of the test decreases, which

appears natural and coincides with simulation results by Chen et al. (2001) for the i.i.d.

setup.
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Table 3.2: Transitions for two-state HMMs.

α12 α21 π1

T1 0.50 0.50 0.50

T2 0.25 0.25 0.50

T3 0.75 0.75 0.50

T4 0.80 0.40 0.33

T5 0.90 0.30 0.25

Table 3.3: Simulated rejection rates of the modified LRT for testing homogeneity under the

hypothesis and under alternative models (two-state HMMs with transition probabilities T1

- T5 given in Table 3.2) for sample size n = 100 and n = 200 with N = 10000 replications.

Hyp. Alt. (HMM), n = 100

Level H T1 T2 T3 T4 T5

0.025 0.029 0.398 0.380 0.381 0.301 0.228

0.05 0.052 0.512 0.484 0.491 0.403 0.323

0.1 0.097 0.632 0.610 0.622 0.522 0.446

Hyp. Alt. (HMM), n = 200

Level H T1 T2 T3 T4 T5

0.025 0.027 0.634 0.627 0.641 0.516 0.391

0.05 0.053 0.733 0.726 0.740 0.626 0.502

0.1 0.100 0.830 0.826 0.832 0.744 0.628

Testing for two states

In the following we investigate the finite-sample performance of the MLRT for m = 2

against m ≥ 3 states as suggested in Section 3.2.3. We both consider the standard example

of HMMs with Poisson sdfs, as well as with zero-mean Gaussian sdfs which are used to

model financial times series (cf. Rydén et al., 1998; Robert et al., 2000).

First, we examine the empirical levels under the hypothesis and consider two-state HMMs

with Gaussian sdfs (N1, N2) and Poisson sdfs (P1) and five different transition matrices T1

- T5 (see Table 3.2). The specific parameter combinations of N1, N2 and P1 are displayed

in Table 3.4.

To perform the test we need to specify the number of states m for the evaluation of
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Table 3.4: Parameter values of the Gaussian sdfs under the hypothesis (N1, N2) and the

alternative (A1, A2) as well as parameter values of the Poisson sdfs under the hypothesis

(P1) and the alternative (A3, A4).

Gaussian (μ = 0)

σ2
1 σ2

2 σ2
3

N1 1 2.5

N2 1 4

A1 1 2.5 4

A2 1 3 6

Poisson

θ1 θ2 θ3

P1 3 12

A3 3 8 1

A4 3 12 7

L
I(m)
n (Ĝ(m)) and the constants C2, Cm. Under the hypothesis we choose the minimal m =

m∗, i.e. m = 4 for T1-T4 and m = 6 for T5. Under the alternative we always take m = 4.

We set C2 = C4 = C6 = 1 and choose the starting values as suggested by Chen et al.

(2004).

Tables 3.5 - 3.6 show the simulated rejection rates for sample sizes n = 200 and n = 1000

for different levels. Note that models N1 and N2 are often used for financial time series

analysis where large data sets are available Rydén et al. (1998).

In general, the simulated rejection rates correspond to the specified levels under the hy-

pothesis in a satisfactory manner. Only for sample size n = 200 and for N1 and N2, the

test is somewhat conservative. The simulations also show better results for N2, where the

components differ clearly, than for N1. Note that as expected from the asymptotic theory,

the different transition matrices T1-T5 do not seem to have much influence on the results.

Indeed, the finite sample behavior for different transition matrices with equal stationary

distribution hardly differs, at least as long as transitions are not made too rarely or too

frequently (i.e. the diagonal entries are not too close to 0 or 1).

Second, we examine the power of the tests under alternative models. We consider three-

state HMMs with Gaussian sdfs (A1, A2) and Poisson sdfs (A3, A4) and four different

transition matrices T6 - T9, where T6, T7 and T8 are matrices of the form (2.19) and T9

the corresponding i.i.d. mixture model. The specific parameter combinations of A1 -A4

are displayed in Table 3.4 and transition probabilities for T6 - T9 are given in Table 3.7.

The results for sample sizes n = 200 and n = 500 and additionally for n = 1000 for A1

and A2 are displayed in Tables 3.8 - 3.9.

Generally speaking, the simulations show that one should expect only a slight loss of power

when introducing dependence. In fact, the influence of the different transition matrices
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Table 3.5: Simulated rejection rates of the modified LRT for the models under the hypoth-

esis N1, N2 and P1 in Table 3.4 with transition probabilities T1 - T5 given in Table 3.2

for sample size n = 200 with N = 10000 replications.

N1 (Gaussian), n = 200

Level T1 T2 T3 T4 T5

0.025 0.010 0.009 0.012 0.008 0.010

0.05 0.021 0.021 0.022 0.016 0.018

0.1 0.045 0.045 0.044 0.034 0.037

N2 (Gaussian), n = 200

Level T1 T2 T3 T4 T5

0.025 0.020 0.022 0.019 0.013 0.013

0.05 0.039 0.040 0.039 0.028 0.029

0.1 0.073 0.074 0.072 0.061 0.058

P1 (Poisson), n = 200

Level T1 T2 T3 T4 T5

0.025 0.032 0.032 0.030 0.031 0.032

0.05 0.056 0.056 0.056 0.054 0.060

0.1 0.101 0.101 0.098 0.098 0.109
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Table 3.6: Simulated rejection rates of the modified LRT for the models under the hypoth-

esis N1, N2 and P1 in Table 3.4 with transition probabilities T1 - T5 given in Table 3.2

for sample size n = 1000 with N = 10000 replications.

N1 (Gaussian), n = 1000

Level T1 T2 T3 T4 T5

0.025 0.022 0.023 0.020 0.016 0.018

0.05 0.044 0.044 0.039 0.035 0.034

0.1 0.082 0.080 0.076 0.067 0.070

N2 (Gaussian), n = 1000

T1 T2 T3 T4 T5

0.025 0.033 0.031 0.030 0.027 0.027

0.05 0.063 0.057 0.055 0.053 0.054

0.1 0.110 0.104 0.103 0.103 0.107

P1 (Poisson), n = 1000

Level T1 T2 T3 T4 T5

0.025 0.030 0.030 0.034 0.034 0.036

0.05 0.055 0.055 0.059 0.061 0.063

0.1 0.096 0.102 0.104 0.111 0.116

Table 3.7: Transitions probabilities for models under the alternative. The transition matrix

is of the form (2.19).

α β γ δ π1 π2 π3

T6 0.60 0.60 0.35 0.70 0.40 0.40 0.20

T7 0.10 0.10 0.20 0.40 0.40 0.40 0.20

T8 0.05 0.05 0.05 0.10 0.40 0.40 0.20

T9 i.i.d. 0.40 0.40 0.20
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Table 3.8: Simulated rejection rates of the modified LRT for the models under the alter-

native A1 - A4 in Table 3.4 with transition probabilities T6 - T9 given in Table 3.7 for

sample size n = 200 and n = 500 with N = 10000 replications.

A1 (Gaussian), n = 200

Level T6 T7 T8 T9

0.025 0.048 0.049 0.040 0.046

0.05 0.090 0.086 0.072 0.083

0.1 0.157 0.153 0.129 0.155

A2 (Gaussian), n = 200

Level T6 T7 T8 T9

0.025 0.214 0.192 0.152 0.216

0.05 0.313 0.288 0.234 0.313

0.1 0.441 0.413 0.351 0.443

A3 (Poisson), n = 200

Level T6 T7 T8 T9

0.025 0.327 0.293 0.239 0.326

0.05 0.437 0.399 0.334 0.446

0.1 0.567 0.529 0.451 0.573

A4 (Poisson), n = 200

Level T6 T7 T8 T9

0.025 0.247 0.233 0.216 0.231

0.05 0.348 0.329 0.305 0.330

0.1 0.476 0.463 0.427 0.466

A1 (Gaussian), n = 500

Level T6 T7 T8 T9

0.025 0.146 0.145 0.137 0.149

0.05 0.227 0.219 0.213 0.227

0.1 0.343 0.333 0.315 0.342

A2 (Gaussian), n = 500

Level T6 T7 T8 T9

0.025 0.570 0.552 0.540 0.582

0.05 0.684 0.664 0.649 0.695

0.1 0.793 0.772 0.759 0.799

A3 (Poisson), n = 500

Level T6 T7 T8 T9

0.025 0.700 0.680 0.622 0.714

0.05 0.791 0.774 0.713 0.807

0.1 0.878 0.857 0.804 0.881

A4 (Poisson), n = 500

Level T6 T7 T8 T9

0.025 0.532 0.529 0.506 0.531

0.05 0.646 0.640 0.609 0.646

0.1 0.761 0.754 0.722 0.769
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Table 3.9: Simulated rejection rates of the modified LRT for the models under the alter-

native A1 - A4 in Table 3.4 with transition probabilities T6 - T9 given in Table 3.7 for

sample size n = 1000 with N = 10000 replications.

A1 (Gaussian), n = 1000

Level T6 T7 T8 T9

0.025 0.313 0.310 0.304 0.307

0.05 0.422 0.419 0.410 0.417

0.1 0.556 0.550 0.546 0.551

A2 (Gaussian), n = 1000

Level T6 T7 T8 T9

0.025 0.882 0.884 0.868 0.884

0.05 0.929 0.930 0.916 0.933

0.1 0.965 0.965 0.957 0.966

on the resulting power is small. Only, for models where transitions are sparse as for the

models with transition matrix T8 one observes a slight loss of power, as might be expected.

Furthermore, one observes that the test is more powerful against A2 than against A1.

Similarly, for the Poisson case there is a higher power against A4 than against A3. Note

that Poisson-mixtures were also investigated in the simulations by Chen et al. (2004), our

results are rather close to those obtained in that paper.

3.2.5 Empirical illustrations

Fetal lamb movements

As a first illustration, let us revisit the fetal movement data set which is displayed and

analyzed in Leroux and Puterman (1992) and reanalyzed by Chen et al. (2004). Leroux and

Puterman (1992) fit both two- and three component independent Poisson mixtures as well

as two- and three-state Poisson HMMs. They find for these data that while independent

mixtures are only marginally better than a negative binomial model, the fits provided by

the HMMs are much superior and should be used. In fact, there is strong evidence for

autocorrelation in these data (cf. Figure 3.2). For a two-state Poisson HMM, ordinary

maximum likelihood yields the following estimates: α̂12 = 0.011, α̂21 = 0.310, θ̂1 = 0.256

and θ̂2 = 3.115. Assuming m = 2, the ordinary likelihood ratio test rejects the hypothesis
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of independence, i.e. H : α12 = 1 − α21 with a p-value nearly zero. The comparison of the

autocorrelation functions of the sample and the two-state Poisson HMM with parameters(
α̂12, α̂21, θ̂1, θ̂2

)
displayed in Figure 3.2 indicates that a two-state Poisson HMM is an

appropriate model for the given data.
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Figure 3.2: Autocorrelation function for the series of fetal lamb movements.

(Source: The data set is published in Leroux and Puterman (1992, p.547, Table 1).)

However, using formal model selection criteria one cannot decide between the two-state

HMM (selected by BIC) and the three-state HMM (selected by the AIC). Using the mod-

ified LRT for two components in independent mixtures, Chen et al. (2004) test the hy-

pothesis of two components which, yielding a p-value of 0.085, cannot be rejected. From

Theorem 1, it follows that their analysis remains valid for the marginal mixture distribution

even if the model of choice is an HMM.

Series of log-returns of the S&P 500

Rydén et al. (1998) use HMMs with zero-mean Gaussian state-dependent distributions to

analyze the series of log-returns of daily values of the S&P 500 index (formerly called S&P

90). Specifically, they consider the series of log-returns of ten subseries of length 1700

of the S&P 90/500 from 3 January 1928 to 30 April 1991. We shall examine the same

ten subseries A, . . . , J , with outlier replacement and centering of each subseries being

conducted as in their paper.
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In order to determine the number of states of the HMM, Rydén et al. (1998) use an M- out-

of N (M = 800) bootstrap for the full-model LRT for two against three components. This

procedure requires repeated maximization of the full log-likelihood function of an HMM

with three states. We found this procedure extremely computationally expensive, since

proper maximization also require the choice of several starting value combinations, and

we were not able to investigate the properties in an adequate simulation. In fact, in their

analysis Rydén et al. (1998) only used very small bootstrap samples for the distribution

of the LRT of size 50, and rejected the hypothesis if the LRT statistic from the first M

observations of the sample exceeded 48 (or more) values of the bootstrap distribution.

Also, the choice of M in the M- out-of N bootstrap is a somewhat subjective manner, and

may (at least in practice) significantly influence the results.

Therefore, we apply the modified LRT for two against more states to this data set, where

we use m = m∗ and set Cm = 1 for all m. As illustration, we present the estimates of the

fitted models Ĝ(2) and Ĝ(m) for the subseries H (m = 4), I (m = 4) and J (m = 5) in Table

3.10.

Table 3.10: Estimates Ĝ(2) and Ĝ(m) for the subseries H, I and J of the series of log-returns

of the S&P 500 index, each of length 1700.

π̂1 σ̂1 σ̂2

H 0.679 0.0064 0.0125

I 0.562 0.0062 0.0115

J 0.704 0.0063 0.0154

π̂1 π̂2 π̂3 π̂4 π̂5 σ̂1 σ̂2 σ̂3 σ̂4 σ̂5

H 0.181 0.308 0.308 0.203 0.0043 0.0077 0.0077 0.0136

I 0.232 0.287 0.287 0.193 0.0049 0.0084 0.0084 0.0131

J 0.173 0.242 0.252 0.252 0.081 0.0032 0.0063 0.0101 0.0101 0.0210

One observes that for H and I the mixture distribution Ĝ(m) exhibits only three different

components, while for series J four distinct components are present. The values of the

LRT statistic, the estimated p̂ in the limit distribution in (3.19) as well as the p-values of

the test are displayed in Table 3.11.

While for the series J , the hypothesis of two states can be rejected at a level of α < 0.001,

for series H and I rejection is only possible at a nominal level of 0.1. Note that from the
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Table 3.11: Test results of the hypothesis m = 2 for the subseries H, I and J of the series

of log-returns of the S&P 500 index, each of length 1700.

LRT p̂ p-value

H 2.68 0.09 0.074

I 2.16 0.08 0.099

J 21.72 0.12 0.000

simulations in Section 3.2.4 we may expect that the test is somewhat conservative in such

settings, so that a test decision on a nominal level of 0.1 appears to be reasonable.

3.3 Testing for the number of components in a switch-

ing regression model

The class of switching regression models (SRMs) extends the class of finite mixture models

in another direction than HMMs, namely it enables the integration of covariates. Here,

the specification of the number of components is also an important issue. As described in

Sec. 1.3 we assume that the joint density of (Yi, Xi) is of the form

fswitch(yi, xi; β,G) = (π1(G)f(yi, xi; β, θ1) + . . .+ πm(G)f(yi, xi; β, θm))h(xi), (3.20)

where β denotes the structural parameter, which is equal in all components, and G denotes

anm-point distribution on Θ. SRMs are applied in various settings and for different families

{f(y, x; β, θ)|β ∈ B, θ ∈ Θ}, of which we present some commonly used examples from the

context of generalized linear models.

Example 3.1 (switching logistic regression). Let Ui be independent copies of a latent

variable with values in Θ following an m-point distribution G on Θ. If (Yi, Xi)i are condi-

tionally independent given Ui, satisfy P (Yi ∈ {0, 1}) = 1 and

logitP
(
Yi = 1|Xi = xi, Ui = θk

)
= xTi β + wTi θk,

where wi is an l-dimensional vector of covariates, then the model is called an m-component

switching logistic regression model. The density of (Yi, Xi) is then given by

fswitch(yi, xi; β,G)

=
m∑
k=1

πk(G)
(
logit−1(xTi β + wTi θk)

)yi
(
1 − logit−1(xTi β + wTi θk)

)(1−yi) h(xi).
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This model can be extended in a straightforward fashion to switching binomial regression

models, in which case we denote the number of successes by n (cf. Sec. 3.3.3).

Example 3.2 (switching Poisson regression). Again let Ui be independent copies of a

latent variable with values in Θ following the distribution G. If (Yi, Xi)i are conditionally

independent given Uiand satisfy for yi ∈ N0

P
(
Yi = yi|Xi = xi, Ui = θk

)
=

1

yi!
λyi

i;k exp(−λi;k),

where λi;k = exp
(
xTi β+wTi θk

)
, then the model is called an m-component switching Poisson

regression model. For (Yi, Xi) we then have that

fswitch(yi, xi, β,G) =
m∑
k=1

πk(G)
1

yi!
λyi

i;k exp(−λi;k)h(xi).

Example 3.3 (linear switching regression). Here,

Yi = xTi β + wTi Ui + εi,

where the εi are independently distributed with E εi = 0 and V ar εi = σ2 < ∞., e.g.

εi ∼ N (0, σ2).

In all three examples choosing the number of components m is of primary interest in every

application. The testing problem of homogeneity is investigated by Zhu and Zhang (2004)

by means of the LRT as well as the MLRT. Again our focus is also on situations where

heterogeneity is evident and it is of interest to test whether the latent distribution only

has two states or more than two states.

The remainder of the section is organized in the way that we first present the results by Zhu

and Zhang (2004) for testing homogeneity, we then derive the MLRT for testing for two

components in SRMs. As Zhu and Zhang (2004) we also discuss extensions of the described

model to a longitudinal setup and to SRMs with not i.i.d., but Markov-dependent regime

(MSRMs), which are closely related to HMMs. In a simulation study we investigate the

finite-sample behavior of the test for two components. Finally, we apply the methodology

to data of a dental health trial. Here, the model selection criteria AIC and BIC favor

distinct binomial regression models with switching intercept (AIC three components, BIC

two components). The MLRT allows us to reject the hypothesis of two components in

favor of three components.
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3.3.1 Testing for homogeneity in a switching regression model

Zhu and Zhang (2004) investigate the LRT for testing for homogeneity in a switching

regression model, i.e.

H : π1(1 − π1)(θ1 − θ2) = 0, β ∈ B against K : π1 ∈ [0, 1], β ∈ B, θ1, θ2 ∈ Θ. (3.21)

Similarly to the result by Chen and Chen (2001) presented in Sec. 3.1.1 they show that the

LRT converges in distribution to the maxima of a stochastic process (cf. Zhu and Zhang,

2004, Thm. 1).

Zhu and Zhang (2004) also consider the MLRT for testing (3.21) following Chen et al.

(2001). As Zhu and Zhang (2004) do not restrict themselves as Chen et al. (2001) to the

case of a one-dimensional switching parameter, i.e. Θ ⊂ R, their result is more general, but

the derived asymptotic distribution is in general not of a simple form as in Theorem 3.2.

Rather then presenting Zhu and Zhang’s result in full generality we stick to the assumption

Θ ⊂ R. In particular, this covers the important class of SRMs with switching intercept.

The modified log-likelihood function for an m-component SRM is given by

L̃(m)
n (β,G) = L(m)

n (β,G) − pen(G) (3.22)

with the ordinary log-likelihood function for an m-component SRM

L(m)
n (β,G) =

∑
i

log fswitch(yi, xi; β,G)

for G ∈ Mm (the m-point distributions on Θ) and a penalty pen(G). Zhu and Zhang

(2004) consider as Chen et al. (2001) the penalty

pen(G) = −C log 4π1(G)(1 − π1(G))

for G ∈ M2. Similarly the MLRT for the testing problem (3.21) is given by

Tmod
n = 2

(
sup

β∈B,G∈M2

L̃(2)
n (β,G) − sup

β∈B,θ∈Θ
L(1)
n (β, θ)

)
.

Zhu and Zhang (2004) show that Chen’s result for the MLRT in finite mixtures (see

Theorem 3.2) transfers to SRMs:

Theorem 3.7. Suppose that the Assumptions A.1-A.3 in Zhu and Zhang (2004) are sat-

isfied. Further assume that f(y, x; β0, θ0)h(x) is the density of the true regression model

(Yi, Xi)i. Then

Tmod
n

L−→ 1

2
χ2

0 +
1

2
χ2

1. (3.23)
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For the proof see Zhu and Zhang (2003, Proof of Thm. 2). Note that, Assumptions A.1-A.3

in Zhu and Zhang (2004) apply to a very general, possibly longitudinal setting. For our

purposes an alternative set of conditions might be formulated by adopting Assumptions

3.1 - 3.5 to the switching regression context.

3.3.2 Testing for two components in a switching regression model

We consider the testing problem for two components in a switching regression model with

independent regime as well as with Markov-dependent regime.

Testing for two components in an SRM with independent regime

Suppose that for different i, the observations (Yi, Xi) are independent. We propose a test

for two components in an SRM with one-dimensional switch, i.e.

H : G0 ∈ M2 against K : G0 ∈ M \ M2, (3.24)

in an SRM with G0 denoting the true two component distribution of the switching param-

eter on Θ ⊂ R, i.e.

G0(θ) = π0 I{θ01≤θ} + (1 − π0)I{θ02≤θ}.

Following Chen et al. (2004) the MLRT is based on the modified log-likelihood function

L̃
(m)
n (β,G) as displayed in (3.22) with penalty function

pen(G) = −Cm
m∑
k=1

log
(
πk(G)

)
,

for G ∈ Mm on Θ with a positive constant Cm > 0. We denote the MMLE, i.e. the

maximizer of L̃
(m)
n ( · ) by (β̂(m), Ĝ(m)), or more explicitly

(β̂(m), π̂
(m)
1 , . . . , π̂(m)

m , θ̂
(m)
1 , . . . , θ̂(m)

m ).

The MLRT statistic for the hypothesis (3.24) in SRMs is then formed by

Tmod
n = 2

(
L(m)
n (β̂(m), Ĝ(m)) − L(2)

n (β̂(2), Ĝ(2))
)
, (3.25)

Regularity conditions

Following Chen et al. (2004) we require the following regularity conditions. Essentially,

the assumptions reformulate Assumptions 3.2’-3.5’ in terms the two-component switching

model fswitch

(
y, x; β0, G0

)
rather than fmix

(
y;G0

)
. Note, that only θ is assumed to be
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one-dimensional, while β ∈ R
q such that the derivatives w.r.t. β should be understood in

terms of the gradient etc. As in Sec. 3.1.2 we define similar quantities as for corresponding

testing problem in finite mixtures:

Z1
i0(β, θ) =

f(Yi, Xi; β, θ) − f(Yi, Xi; β0, θ)

fswitch

(
Yi, Xi; β0, G0

) ,

Z1
ik(β, θ) =

f(Yi, Xi; β, θ) − f(Yi, Xi; β, θ0k)

fswitch

(
Yi, Xi; β0, G0

) , for k = 1, 2

Z l1l2
i (β, θ) =

dl1+l2

dθl1dβl2
f(Yi, Xi; β, θ)

fswitch

(
Yi, Xi; β0, G0

) , for l1 = 0, 1, 2, 3, l2 = 0, 1, 2, l1 + l2 �= 0.

where G0 denotes again the true two component switching distribution. As above we define

Z1
ik(β,G) =

∫
Z1
ik(β, θ)dG(θ) for G ∈ Mm.

Assumption 3.1” (Wald-type integrability condition) Let

E0 [|log fswitch(Yi, Xi; β,G0)|] <∞

and there exists ε > 0 such that fswitch(y, x;Q, ε) := 1 + sup‖Q′−Q‖≤ε fswitch(y, x;Q
′) is

measurable and E0 [log fswitch(Yi, Xi;Q, ε)] <∞ for each Q := (β,G).

Assumption 3.2” (Smoothness) The support of each function f(y, x; β, θ) does not de-

pend on (β, θ), and the derivatives

dl1+l2

dθl1dβl2
f(y, x; β, θ)

with l1 = 0, 1, 2, 3, l2 = 0, 1, 2, l1+l2 �= 0 exist and are jointly continuous in (y, x) and (β, θ).

Assumption 3.3” (Strong identifiability) The family {f(y, x; β, θ)} is strong identifiable,

in the sense that for θ1 �= θ2

2∑
k=1

(
akf(y, x; β, θk)+

q∑
l=1

bkl
d

dβl
f(y, x; β, θk)+ ck

d

dθ
f(y, x; β, θk)+dk

d2

dθ2
f(y, x; β, θk)

)
= 0

for all (y, x) implies ak = bk1 = . . . = bkq = ck = dk = 0 for k = 1, 2.

This assumption implies that the asymptotic covariance matrix limn→∞ 1/n
∑n

i=1 bib
T
i with

bi defined below is positive definite.

Assumption 3.4” (Uniform boundedness) There exists an integrable function g and δ > 0

such that |Z1
ik(β, θ)|4+δ ≤ g(Yi) and

∣∣Z l1l2
i (β, θ)

∣∣3 ≤ g(Yi) for all (β, θ), for k = 0, 1, 2;

l1 = 0, 1, 2, 3; l2 = 0, 1, 2; l1 + l2 �= 0.
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Assumption 3.5” (Tightness) The processes n−1/2
∑

i Z
1
ik(β, θ), n

−1/2
∑

i Z
l1l2
i (β, θ) are

tight for k = 0, 1, 2; l1 = 0, 1, 2, 3; l2 = 0, 1, 2; l1 + l2 �= 0.

Asymptotic analysis

In the following we derive the asymptotic distribution of the MLRT under the hypothesis.

We follow the approach by Chen et al. (2004) presented in Sec. 3.1.2 and start with the

standard decomposition

Tmod
n = Tmod

1n −Tmod
0n = 2

(
L(m)
n (β̂(m), Ĝ(m))−L(2)

n (β0, G0)
)−2

(
L(2)
n (β̂(2), Ĝ(2))−L(2)

n (β0, G0)
)
.

Beginning with Tmod
1n we observe Tmod

1n = 2
∑

i log(1 + δi) with

δi =
(
fswitch

(
Yi, Xi; β̂

(m), Ĝ(m)
)− fswitch

(
Yi, Xi; β0, G0

))
/fswitch

(
Yi, Xi; β0, G0

)
.

For the further analysis of Tmod
1n we omit the index m, i.e. β̂ := β̂(m) and Ĝ := Ĝ(m).

Following Chen et al. (2004) we define π̂ = Ĝ(θ0) for θ0 := (θ01 +θ02)/2 and Ĝk for k = 1, 2

such that Ĝ(θ) = π̂Ĝ1(θ) + (1 − π̂)Ĝ2(θ) (cf. Sec. 3.1.2) and observe

δi = (π̂ − π0)Δi(β̂) + Z1
i0(β̂, G0) + π̂Z1

i1(β̂, Ĝ1) + (1 − π̂)Z1
i2(β̂, Ĝ2) (3.26)

with Δi(β̂) = Z1
i2(β, θ)−Z1

i1(β, θ). Expanding the functions Δi, Z
1
i0, Z

1
i1, Z

1
i2 as in (3.5) and

(3.6) yield

δi = (π̂ − π0)Δi(β0) + (β̂ − β0)Z
01
i (β0, G0) + π̂m̂11Z

10
i (β0, θ01) + (1 − π̂)m̂12Z

10
i (β0, θ02)

+π̂m̂21/2 Z
20
i (β0, θ01) + (1 − π̂)m̂22/2 Z

20
i (β0, θ02) + oP (1).

We may now define similar quantities as in (3.7) by

bi =
(
Δi(β0), Z

01
i (β0, G0), Z

10
i (β0, θ01), Z

10
i (β0, θ02), Z

20
i (β0, θ01), Z

20
i (β0, θ02)

)T
(3.27)

and

t(β,G) =
(
π(G)−π0, β−β0π0m11(G1), (1−π0)m12(G2), π0m21(G1)/2, (1−π0)m22(G2)/2

)T
with mlk(G) =

∫
(θ − θ0k)

ldG(θ) and b =
∑

i bi ∈ R
q+5, B =

∑
i bib

T
i ∈ R

(q+5)×(q+5).

This yields∑
i

δi = t(β̂, Ĝ)b + oP (1) and
∑
i

δ2
i = t(β̂, Ĝ)T B t(β̂, Ĝ) + oP (1)
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where b,B are defined in terms of the SRM as follows: Since log(1+δi) ≤ δi− δ2
i /2+ δ3

i /3,

this yields

Tmod
1n ≤ sup

β∈B,G∈Mm

(
2 t(β,G)Tb − t(β,G)T B t(β,G)

)
+ oP (1). (3.28)

Similarly as in (3.9) there exists (β∗, G∗) such that for t∗ = t(β∗, G∗) the supremum on the

right hand side of (3.28) is attained. This implies

Tmod
1n ≥ (

L(m)
n (β∗, G∗) − L(2)

n (β0, G0)
)

(3.29)

= 2 t∗Tb − t∗T B t∗ + oP (1) = sup
β∈B,G∈Mm

(
2 t(β,G)Tb − t(β,G)T B t(β,G)

)
+ oP (1)

and hence

Tmod
1n = sup

β∈B,G∈Mm

(
2 t(β,G)Tb − t(β,G)T B t(β,G)

)
+ oP (1) (3.30)

For Tmod
0n following Chen et al. (2004) shows

Tmod
0n = bT1B11

−1bT1 + oP (1)

for bT = (bT1 ,b
T
2 ) with b2 ∈ R

2 and

B =

(
B11 B12

B21 B22

)
, B22 ∈ R

2×2.

Finally, we arrive via orthogonalization of the right hand side of (3.30) at

Tmod
n = sup

t2∈[0,∞)×[0,∞)

(
2 tT2 b̃2 − tT2 B̃22 t2

)
+ oP (1) (3.31)

for b̃2 = b2 −B21 (B11)
−1 b1 and B̃22 = B22 −B21 (B11)

−1B12, such that we can formulate

the following theorem.

Theorem 3.8. Suppose that Assumptions 3.1” - 3.5” hold and that m in the definition

of Tmod
n in (3.25) satisfies m ≥ m∗ := max

(
[1.5/π0], [1.5/(1 − π0)], 4

)
. Then under H,

the modified likelihood ratio test statistic Tmod
n converges in distribution to a mixture of

χ2-distributions,

Tmod
n

L→ (
1

2
− p)χ2

0 +
1

2
χ2

1 + p χ2
2, (3.32)

where p =
(
cos−1 ρ

)
/(2π) and ρ is the correlation coefficient in the covariance matrix B̃22.

The proof follows Chen et al. (2004) and is given in more detail manner in Sec. 3.4.
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Remark 3.9. Zhu and Zhang (2004) derive Theorem 3.8 not only for homogeneous SRMs,

i.e. fi,switch(yi, xi; β, θ) = fswitch(yi, xi; β, θ) for all i. They also examine the longitudinal

setup, where one considers ni observations (Yi,j, Xi,j) , j = 1, . . . , ni per unit ”i”. If one

assumes that the observations within one unit are also independent conditioned on Ui,

one may interpret this settings as blocks of observations of which one has the additional

information that switching is only apparent between but not within blocks.

Zhu and Zhang (2004) show that their result remains valid under general conditions on the

families {fi,switch(yi, xi; β, θ)}. The same is true for Theorem 3.8. However, for the exten-

sions of the Theorem 3.8 to the longitudinal setup, one must carefully redefine the modified

log-likelihood of the model and the quantities Z1
ik, Z

l1l2
i and modify the Assumptions 3.1”

- 3.5” appropriately. Zhu and Zhang (2003) illustrate, for example, how consistency of the

MMLE can be derived from uniform laws of large number on the log-likelihood function

of the model. They also give insights concerning the tightness assumptions. For example,

they show that for the logistic regression model the boundedness of ni, ||xi|| as well as pos-

itive definitiveness of var[(XT
i , 1)] is relevant. For further details we defer to Dannemann

and Holzmann (2010).

Testing for two components in an SRM with Markov-dependent regime

An interesting extension of the model is to allow some dependence structure in the un-

derlying latent variables. We shall consider the case of a Markov-dependent regime, i.e.

Markov-switching regression models (MSRMs) as introduced in Sec. 1.3. Following the no-

tation from Sec. 1.5 we denote the regime U1, . . . , Un as a stationary, ergodic Markov chain

on a finite set {θ1, . . . , θm} ⊂ Θ with transition matrix P and stationary distribution G.

The marginal density of (Yi, Xi) is of the form (3.20), where the weights π1(G), . . . , πm(G)

are determined by G.

Similar as for HMMs discussed in Sec. 3.2.3, the testing problem (3.24) simply translates

to testing whether the number of states m in the MSRM equals two, i.e.

H : G0 ∈ M2 against K : G0 ∈ M \ M2, (3.33)

where G0 is the stationary distribution of the regime.The modified log-likelihood function

(3.22) neglect the introduced dependence structure and should be called modified log-

likelihood function under independence assumption for MSRMs. But they can still be

used to estimate the parameters β, π1(G), . . . , πm(G) and θ1, . . . , θm, and to form the test

statistic (3.25) in the present situation. However, one should expect that the asymptotic

distribution (3.32) in Theorem 3.8 must be modified due to the dependence structure of
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the regime. Surprisingly, the asymptotic distribution remains the same for the switching

regression model with independent regime as similarly observed for HMMs in Sec. 3.2.3.

To see this, we must again examine the covariance of the asymptotic normal distribution

of n−1/2b̃2, now formed by means of an SRM,

C̃ov = Σ̃ +
∞∑
i=2

E
[
b̃21b̃

T
2i + b̃2ib̃

T
21

]
.

One needs to show that the asymptotic covariance of b̃2 remains the same as for indepen-

dent switching.

Proposition 3.3. Suppose that for a Markov-switching regression model Assumptions 3.1”

- 3.5” hold true. Then, under the hypothesis H of a two-state Markov regime we have

E
[
b̃21b̃

T
2i + b̃2ib̃

T
21

]
= 0 for all i ≥ 2.

The proof of the proposition is similar to the proof of Proposition 3.2 and is given in

Sec. 3.4. Proposition 3.3 implies that the asymptotic distribution (3.32) remains true for

Markov-switching regression models, where the weight p is determined as in Theorem 3.8

from the covariance matrix B̃22. We state this as a corollary of Theorem 3.8.

Corollary 3.1. Suppose that for a Markov-switching regression model Assumptions 3.1”

- 3.5” hold and that m in the definition of the test statistic Tmod
n in (3.25) satisfies

m ≥ m∗ := max
(
[1.5/π0], [1.5/(1 − π0)], 4

)
. Then under the hypothesis H of a two-state

Markov regime the asymptotic distribution of Tmod
n is as in (3.32).

Note that for the more general longitudinal setup described in Remark 3.9 the corollary

only holds true under additional assumptions on the sequence (ni)i, e.g. if these are chosen

at random according to a bounded, stationary process.

One may also think about relaxing the i.i.d. assumption on the regressors. Our simulations

indicate that the effect of dependent regressors, for example if Xi are univariate and follow

an AR(1) process, on the asymptotic covariance matrices and hence on the asymptotic

distribution of the test statistic under the hypothesis is small. So we may conclude that

the described testing procedure is quite robust against violations of the independence

assumptions.

3.3.3 Simulation experiments

We examine the finite sample behavior of the testing procedures for testing for two compo-

nents in an SRM for both independent and Markov dependent regime. A simulation study

for testing homogeneity in SRMs is available in Zhu and Zhang (2004).
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Independent regime

We consider two specific switching Poisson regression models and two switching Binomial

regression models. To apply the testing procedure we use C2 = Cm = 1 and choose m,

the number of components in the alternative, by m∗, where we replace π0 by its estimate

under the hypothesis.

The switching Poisson regression models are specified by q = 2, l = 1 with covariates

Xi = (1, Xi1)
T , Xi1 independent r.v.s uniformly distributed on the unit interval. For the

first model P1 we chooseWi = 1 which leads to the Poisson regression model with switching

intercept:

P
(
Yi = yi|Xi = xi, Ui = θk

)
=

1

yi!
λyi

i;k exp(−λi;k),

with λi;k = exp
(
xiβ + θk

)
. Choosing Wi = Xi leads to the Poisson regression model with

switching regression coefficient (P2) where intensities is given by λi;k = exp
(
xiθk + β

)
.

The two Binomial regression models with switching intercept (B1, B2) are given by

P
(
Yi = yi|Xi = xi, Ui = θk

)
=

(
n

yi

)
pyi

i;k

(
1 − pi;k

)n−yi

with

logit pi;k = xTi β + θk.

For both models we specify n = 8 and for B1 we consider the covariates as in P1, i.e.,

q = 2, l = 1, Xi = (1, Xi)
T , Xi independent r.v.s uniformly distributed on the unit in-

terval and Wi = 1. For B2 the covariates are categorical variables as in the application

we discuss below, i.e., q = 9, l = 1, Xi = (1, Xi1, . . . , Xi8)
T , Xij ∈ {0, 1} eight inde-

pendent copies of Bernoulli r.v.s with success probability 1/2 and Wi = 1. The specific

parameter combinations for models of P1, P2, B1, B2 under the hypothesis (m = 2)

and under the alternative (m = 3) are given in Table 3.12. For B2 β is given by

(−0.8,−0.5,−0.3,−0.4,−0.2,−0.1, 0.1, 0.2)T .

In general, the simulated rejection rates correspond to the specified levels under the hy-

pothesis in a satisfactory manner (see Table 3.13). For small sample size and for the model

B2.H, the test is somewhat conservative. Note, that for small sample sizes the estimation

of ρ as correlation coefficient might fail (if the empirical version of B11 is not invertible),

in this case one may use p = 0.5 leading to a conservative test decision.

Dependent regime

Next we investigate the behavior of the proposed test when the regime is Markov-dependent.

As discussed in Section 3.3.2 if the switching process is a Markov chain rather than an i.i.d.
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Table 3.12: Parameter values of the switching Poisson regression models and the switch-

ing Binomial regression models under the hypothesis (P1.H, P2.H, B1.H, B2.H) and the

alternative (P1.A, P2.A, B1.A, B2.A). For the model B2 the parameter β is given in the

text.

β θ1 θ2 θ3 π1 π2 π3

P1.H 0.5 1 2 0.6 0.4

P1.A 0.5 0 1 2 0.33 0.33 0.33

P2.H 1 1 2 0.6 0.4

P2.A 1 0 1 2 0.33 0.33 0.33

B1.H −2 −2 0 0.6 0.4

B1.A −2 −2 0 1 0.33 0.33 0.33

B2.H −2 0 0.6 0.4

B2.A −2 0 1 0.33 0.33 0.33

process, the asymptotic behavior of the test statistic remains the same.

In addition, we also investigate the case of dependent covariates. Although we have no

formal theory, our simulation indicates that also in this case there is no a significant change

in the asymptotic behavior of the test statistic.

For our simulations we consider the models P1.H and B1.H (see Table 3.12) and choose

the switching process as a Markov chain with transition matrix and P and stationary

distribution π specified as

P =

(
0.8 0.2

0.3 0.7

)
and π =

(
0.6

0.4

)
.

In addition we construct the covariate Xi = (1, Xi)
T based on an autoregressive process

X̃i = ρ0X̃i−1 + εi

with εi ∼ N (0, σ2) i.i.d., with σ2 = 1. Based on X̃i we construct a process with uniform

marginals by

Xi = φ−1

(
X̃i/

√
σ2/(1 − ρ2

0)

)
.

with φ denoting the distribution function for the standard normal distribution. The regres-

sion models with Markov-switching and independent covariates are denoted by P1.MC.H

and B1.MC.H, whereas the models with Markov-switching and dependent covariates (with
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Table 3.13: Simulated rejection rates of the MLRT for the models under the hypothe-

sis P1.H, P2.H, B1.H, and B2.H in Table 3.12 for various sample sizes with N = 5000

replications.

P1.H (Poisson)

Level n = 50 100 200 500

0.025 0.017 0.018 0.022 0.027

0.05 0.031 0.038 0.040 0.047

0.1 0.057 0.068 0.073 0.085

P2.H (Poisson)

Level n = 50 100 200 500

0.025 0.011 0.015 0.023 0.027

0.05 0.021 0.030 0.046 0.052

0.1 0.044 0.060 0.083 0.091

B1.H (Binomial)

Level n = 100 200 500 1000

0.025 0.010 0.013 0.020 0.019

0.05 0.018 0.028 0.039 0.039

0.1 0.040 0.060 0.073 0.081

B2.H (Binomial)

Level n = 100 200 500 1000

0.025 0.011 0.014 0.017 0.016

0.05 0.017 0.025 0.034 0.033

0.1 0.031 0.048 0.062 0.066

ρ0 = 0.5) are denoted by P1.MCAR.H and B1.MCAR.H. The results displayed in Table

3.15 confirm the small effect of the dependency structure on the asymptotic distribution

of the test statistic.

3.3.4 Empirical illustration: Application to dental health trial

We discuss an application of the switching regression model to the dental data set analyzed

by Böhning et al. (1999). In a dental health trail 797 children were exposed to different

treatments for the improvement of their dental health. This was measured by the number

of decayed, missing or filled teeth (DMFT - Index). The index provides counting data,

which cannot exceed 8 in our case, since only eight molars were under examination in

the trail. As covariates there are the six different treatment groups, sex and three ethnic

groups.

The collected data set as displayed in Table 3.18 exhibits a large fraction of zero outcomes.

Since the common generalized linear models, e.g. with Poisson or binomial distributed re-

sponse, typically do not capture this feature, it is a standard method in the GLM framework

to introduce a zero-inflating component to the model. Indeed, the zero-inflated regression

model is a special case of a switching regression model.
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Table 3.14: Simulated rejection rates of the MLRT for the models under the alterna-

tive P1.A, P2.A, B1.A and B2.A in Table 3.12 for various sample sizes with N = 5000

replications.

P1.A (Poisson)

Level n = 50 100 200 500

0.025 0.113 0.248 0.502 0.909

0.05 0.180 0.356 0.622 0.947

0.1 0.281 0.485 0.743 0.976

P2.A (Poisson)

Level n = 50 100 200 500

0.025 0.085 0.220 0.450 0.864

0.05 0.144 0.320 0.564 0.917

0.1 0.233 0.440 0.686 0.956

B1.A (Binomial)

Level n = 100 200 500 1000

0.025 0.097 0.208 0.507 0.813

0.05 0.161 0.292 0.630 0.883

0.1 0.256 0.419 0.749 0.937

B2.A (Binomial)

Level n = 100 200 500 1000

0.025 0.058 0.137 0.394 0.763

0.05 0.094 0.202 0.510 0.838

0.1 0.141 0.301 0.636 0.908

Skrondal and Rabe-Hesketh (2004, p. 349) fit several latent Poisson and binomial regression

models to the data. They consider zero-inflation, two - and three component switching

regression models with switching intercept as well as models with a normally-distributed

intercept (normal intercept models).

In the notation of the introduction, we have n = 797, q = 9 and l = 1 for i = 1, . . . , n

with covariate Xi = (1, Xi1, . . . , Xi8)
T , Xij ∈ {0, 1} for j = 1, . . . , 8 and Wi = 1. The

zero-inflated models are defined by two switching components, where one component is

a point mass at zero. Further, in the normal intercept models, the latent variable Ui is

distributed N(μ, σ2). Specifically, the density of Yi|Xi = xi, Ui = θk is, in the Poisson case,

f(yi, xi; β, θk) = exp
(− exp (xTi β + θk)

)exp
(
yi (x

T
i β + θk)

)
yi!

and in the binomial case with n = 8,

f(yi, xi; β, θk) =

(
8

yi

)(
logit−1(xTi β + θk)

)yi
(
1 − logit−1(xTi β + θk)

)8−yi .

A point mass at zero arises as a limiting case for θ1 = −∞, thus, the zero-inflated

model can be thought of as a sub-model of the two-component switching model (with

one parameter less).
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Table 3.15: Simulated rejection rates of the modified LRT for the models with depen-

dency structure over time P1.MC.H, P1.MCAR.H, B1.MC.H and B1.MCAR.H under the

hypothesis for various sample sizes with N = 5000 replications.

P1.MC.H

Level n = 100 200 500

0.025 0.018 0.024 0.024

0.05 0.032 0.041 0.046

0.1 0.064 0.074 0.081

P1.MCAR.H

Level n = 100 200 500

0.025 0.023 0.025 0.027

0.05 0.043 0.047 0.045

0.1 0.071 0.085 0.079

B1.MC.H

Level n = 200 500 1000

0.025 0.014 0.018 0.019

0.05 0.026 0.037 0.040

0.1 0.059 0.078 0.085

B1.MCAR.H

Level n = 200 500 1000

0.025 0.013 0.018 0.027

0.05 0.027 0.036 0.049

0.1 0.060 0.070 0.086

Table 3.16 contains the results of the model selection criteria AIC and BIC for the above

mentioned latent regression models (we omit the simple Poisson and binomial regression

model without latent variable). We note that except for the zero-inflated variant, the mod-

els based on the binomial distribution perform better than the corresponding model based

on the Poisson distribution. Further, the overall best model in terms of AIC is the two-state

binomial model, and in terms of BIC the three-state binomial model. Thus, in this problem

Table 3.16: Log-Likelihood, AIC and BIC for the latent regression models. ZI: zero-inflated

model, NI: normal intercept model.

Poisson Binomial

ZI m=2 m=3 NI ZI m=2 m=3 NI

Log-like −1410 −1406 −1406 −1433 −1431 −1400 −1397 −1409

AIC 2841 2834 2838 2886 2882 2822 2821 2838

BIC 2887 2886 2899 2932 2929 2874 2882 2885

model selection criteria give a clear indication of population heterogeneity, but do not allow

to decide between a two- and a three component model. Therefore, we test for two against
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three states by using the above methodology. Note that since m∗ is at least 4, the test

will be asymptotically conservative. Table 3.17 provides the penalized maximum likelihood

estimators for the two- and three-component binomial switching regression model. When

fitting a model with four potential components, two components (i.e. parameters of the

binomial components) were equal, thus, it reduced to the three-component model.

We use C2 = C4 = 1 and obtain Tmod
n = 5.71, with the estimate p̂ = 0.40 this yields a

P-value of 1.4%. Thus, the test clearly rejects two components in favor of three components.

Finally, in Table 3.18 we display the observed and expected frequencies under the fitted

models (estimated without penalization). We also see here that the three component model

provides quite a good fit to the data.

Table 3.17: Penalized ML-estimators for the two- and three-component model.

π1 π2 π3 θ1 θ2 θ3 Log-like

m=2 0.49 0.51 −2.30 −0.28 −1400.19

m=3 0.23 0.44 0.33 −3.47 −1.27 −0.01 −1397.33

β1 β2 β3 β4 β5 β6 β7 β8

m=2 −0.42 −0.17 −0.46 −0.28 −0.74 0.17 0.13 −0.14

m=3 −0.41 −0.16 −0.50 −0.38 −0.81 0.16 0.13 −0.18

Table 3.18: Observed and expected frequencies under the fitted binomial models.

obs m=1 ZI m=2 m=3

0 231 107.21 227.88 221.72 226.84

1 163 230.81 120.50 180.94 171.36

2 140 233.84 174.21 130.26 141.90

3 116 145.04 150.21 113.99 109.83

4 70 59.90 84.21 85.11 77.62

5 55 16.76 31.33 45.26 45.10

6 22 3.08 7.53 16.00 18.86

7 0 0.34 1.06 3.40 4.90

8 0 0.02 0.07 0.33 0.59
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3.4 Proofs

Proof of Proposition 3.1 . By the boundedness of bib
T
i (Assumption 3.4’) the classical strong

law of large numbers (e.g. Shiryaev, 1996, Chp. IV, § 3, Thm. 3) yields

1

n
B̃22

a.s.−→ Σ̃

with Σ̃ positive definite 2 × 2-matrix. The classical central limit theorem (e.g. Shiryaev,

1996, Chp. III, § 3; Thm. 3) gives

1√
n
b̃2

L−→ N (0, Σ̃)

since bi and hence b̃2 is centered under G0. Therefore we have

sup
t2∈C

(
2 tT2 b̃2 − tT2 B̃22 t2

)
= sup

t2∈C

(
2 tT2Z − tT2 Σ̃ t2

)
+ oP (1)

for the cone C = [0,∞) × [0,∞) and Z ∼ N (0, Σ̃). Since

sup
t2∈C

(
2 tT2Z − tT2 Σ̃ t2

)
= sup

t̃∈C̃

(
2 t̃T Σ̃−1/2Z − t̃T t̃

)
= Z̃T Z̃ − inf

t̃∈C̃
(Z̃ − t̃)T (Z̃ − t̃),

for C̃ = Σ̃1/2C and Z̃ bivariate standard normal r.v., we can apply the arguments from

Self and Liang (1987, case 7) as in Example 2.3 to establish the proposition.

Proof of Theorem 3.4 . Under the stated assumptions a standard expansion gives

0 = DωL
I
n(ω̂) = DωL

I
n(ω0) +D2

ωL
I
n(ω0)(ω̂ − ω0) + o(‖ω̂ − ω0‖). (3.34)

Ergodicity and stationarity of the process (Yi)i (cf. Leroux, 1992b) yield

lim
n→∞

D2
ωL

I
n(ω0) = E0

[
D2
ω log fmix(Y1;ω0)

]
= Σ0. (3.35)

Lindgren (1978) showed that the process (Yi)i is strongly mixing with exponentially decay-

ing mixing coefficient. This allows us to apply Theorem 18.5.3 from Ibragimov and Linnik

(1971) to see

1√
n
DωL

I
n(ω0)

L−→ N (0,Cov0). (3.36)

In fact, one requires a multivariate extension of Ibragimov and Linnik’s theorem, which

can be obtained by adopting the Cramér-Wold device. The well-definition of the matrix

Cov0 = E
[
h(Y1;ω0)h(Y1;ω0)

T
]
+

∑
j≥2

E
[
h(Y1;ω0)h(Yj;ω0)

T + h(Yj;ω0)h(Y1;ω0)
T
]
,
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with h(y;ω) =
(
Dω log fmix(y;ω)

)
is a consequence of Ibragimov and Linnik’s theorem,

however for HMMs this as well as the mixing property just follows from the fact that for

ergodic Markov chains the n-step transition probabilities approach the stationary prob-

abilities exponentially fast. Combining the first three displayed equations concludes the

proof.

Proof of Theorem 3.5 . The proof follows the same lines as for i.i.d. models, as for example

discussed in Pruscha (2000, pp. 251–256). We start with the decomposition

T In = T I1n − T I0n = 2
(
LIn(ω̂) − LIn(ω0)

)− 2
(
LIn(ϕ(t̂)) − LIn(ϕ(t0))

)
.

where ω̂ and t̂ denote the unrestricted and restricted MLEIs. Using the consistency of ω̂

and (3.34) and (3.35) standard expansion technique shows

T I1n = (ω̂ − ω0)
T
(
D2
ωL

I
n(ω0)

)
(ω̂ − ω0) + op(1) = n(ω̂ − ω0)

TΣ0(ω̂ − ω0) + op(1)

=
1

n
DωL

I
n(ω0)

TΣ−1
0 DωL

I
n(ω0) + op(1)

Since the proof of Theorem 3.4 and hence the equations (3.34) and (3.35) can be rephrased

in the parametrization t a similar expansion applies to T I0n, in particular we note that

DtL
I
n(ϕ(t0)) = ST0 DωL

I
n(ω0) + op(

√
n)

1

n
D2
tL

I
n(ϕ(t0)) = ST0 Σ0S0 + op(1)

ST0 Σ0S0(t̂− t0) =
1

n
DtL

I
n(ϕ(t0)) + op

( 1√
n

)
with S0 = Dtϕ(t0) such that one has for an consistent MLEI t̂

T I0n = (t̂− t0)
TD2

tL
I
n(ϕ(t0))(t̂− t0) + op(1) = n(t̂− t0)

TST0 Σ0S0(t̂− t0) + op(1)

=
1

n
DtL

I
n(ϕ(t0))

T (ST0 Σ0S0)
−1DtL

I
n(ϕ(t0)) + op(1)

=
1

n
DωL

I
n(ω0)

TS0(S
T
0 Σ0S0)

−1ST0 DωL
I
n(ω0) + op(1)

Combining these calculations concludes the proof

T In =
1

n
DωL

I
n(ω0)

TΣ−1
0 DωL

I
n(ω0) − 1

n
DωL

I
n(ω0)

TS0(S
T
0 Σ0S0)

−1ST0 DωL
I
n(ω0) + op(1)

=
1

n
DωL

I
n(ω0)

T
(
Σ−1

0 − S0(S
T
0 Σ0S0)

−1ST0
)
DωL

I
n(ω0) + op(1)

= ZTCov
1/2
0

(
Σ−1

0 − S0(S
T
0 Σ0S0)

−1ST0

)
Cov

1/2
0 Z

with Z ∼ N(0, Id̄×d̄), where the last equation follows from (3.36).
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Proof of Proposition 3.2 . Set Bi = E
[
b1b

T
i

]
, and partition Bi into

Bi =

(
Bi

11 Bi
12

Bi
21 Bi

22

)
, Bi

11 ∈ R
3×3.

Let for k = 1, 2

λk = E [b1|U1 = k] =

∫
b1(y)fθ0k

(y) dy ∈ R
5.

From E [b1] = 0 it easily follows that λ2 = c1λ1, where c1 = −α21

α12
�= 0. Using this and

E
[
Δ1b1

]
= E

[(
Z1

12(θ) − Z1
11(θ)

)
b1
]

=

∫
fθ01(y) − fθ02(y)

fmix

(
y;G0

) b1(y)fmix

(
y;G0

)
dy

=

∫ (
b1(y)fθ01(y) − b1(y)fθ02(y)

)
dy = E

[
b1|U1 = 1

]− E
[
b1|U1 = 2

]
= λ1 − λ2

we arrive at

B1 1̄ = λ1 − λ2 = (1 − c1)λ1 (3.37)

where 1̄ = (1, 0, 0, 0, 0)T . Further, using λ2 = c1λ1 and E
[
b1b

T
i |U1, Ui

]
= E

[
b1|U1

]
E
[
bi|Ui

]T
one shows that

Bi = E
[
b1b

T
i

]
= ciλ1λ

T
1 , i ≥ 2, (3.38)

where ci = α21

α12

(
1 − α

(i−1)
12 − α

(i−1)
21

)
, and α

(i)
jk = P (Ui+1 = k|U1 = j) denotes the i-step

transition probability. Note, that ci = 0 for all i if and only if a12 + a21 = 1, which leads

to independence of the (Yi). Furthermore, note that (3.38) implies the symmetry of Bi. In

order to show B̃i = 0 for i ≥ 2, we compute

B̃i = E
[
b̃21b̃

T
2i

]
= Bi

22 −Bi
21

(
B1

11

)−1
B1

12 −B1
21

(
B1

11

)−1
Bi

12 +B1
21

(
B1

11

)−1
Bi

11

(
B1

11

)−1
B1

12

To establish our claim, we show that all four summands in this expansion coincide. From

(3.37), one observes

B1
11 1̄ = (1 − c1) (λ11, λ12, λ13)

T

and hence (
B1

11

)−1
(λ11, λ12, λ13)

T =
1

1 − c1
1̄,

where 1̄ = (1, 0, 0)T and λ1j denotes the jth component of λ. Using this, (3.37) and (3.38) give

B1
21

(
B1

11

)−1
Bi

12 = ciB
1
21

(
B1

11

)−1
(λ11, λ12, λ13)

T (λ14, λ15)

=
ci

1 − c1
B1

21 1̄ (λ14, λ15) = ci (λ14, λ15)
T (λ14, λ15) = Bi

22.
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Since B1 and Bi are symmetric, one also has Bi
21 (B1

11)
−1
B1

12 = Bi
22. The same argument

applies to the last matrix

B1
21

(
B1

11

)−1
Bi

11

(
B1

11

)−1
B1

12

= ciB
1
21

(
B1

11

)−1
(λ11, λ12, λ13)

T (λ11, λ12, λ13)
(
B1

11

)−1
B1

12

=
ci

(1 − c1)2
B1

21 1̄ 1̄TB1
12 = ci (λ14, λ15)

T (λ14, λ15) = Bi
22.

This concludes the proof.

Proof of the fact that Ass. 3.4’ implies Ass. 3.5’ (Remark 3.8). Chen et al. (2004) show

that Assumption 3.4’ implies Assumption 3.5’ by using Theorem 12.3 in (Billingsley, 1968,

p.95). To apply this theorem they show

E
[(
n−1/2

∑
i

Z1
ik(θ1)−n−1/2

∑
i

Z1
ik(θ2)

)2]
=E

[(
Z1

1k(θ1)−Z1
1k(θ2)

)2]≤E[
g2/3(Y1)

] |θ1 − θ2|2

Since in the case of dependent data the first equality fails, we rephrase the calculation for

the HMM setup:

E
[(
n−1/2

∑
i

Z1
ik(θ1) − n−1/2

∑
i

Z1
ik(θ2)

)2]
= n−1

∑
i

E
[(
Z1
ik(θ1) − Z1

ik(θ2)
)2]

+ n−1
∑
i
=j

E
[(
Z1
ik(θ1) − Z1

ik(θ2)
)(
Z1
jk(θ1) − Z1

jk(θ2)
)]

= E
[(
Z1

1k(θ1) − Z1
1k(θ2)

)2]
+ 2

n∑
i=2

E
[(
Z1

1k(θ1) − Z1
1k(θ2)

)(
Z1
ik(θ1) − Z1

ik(θ2)
)]

≤
(
E
[
g2/3(Y1)

]
+ 2

∞∑
i=2

E
[
g1/3(Y1)g

1/3(Yi)
]) |θ1 − θ2|2

Since (Yi)i is strongly mixing with exponentially decaying coefficients (cf. Lindgren, 1978)

the sum in the last line is finite and hence Thm. 12.3 from Billingsley (1968) can also be

applied here.

Proof of Theorem 3.8. We follow Chen et al. (2004) and provide some details to the sketch

given above. Starting with (3.26) we consider the expansions of Z1
i0, Z

1
i1 and Z1

i2 for k = 1, 2

and i = 1, . . . , n

Z1
i0(β, θ) = (β − β0)Z

01
i (β0, θ) + εi0

Z1
ik(β, θ) = (θ − θ0k)Z

10
i (β, θ0k) + (θ − θ0k)

2/2 Z20
i (β, θ0k) + εik
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and

Z1
i (β, Ĝk) = (β − β0)Z

01
i (β0, G0) + ε̃i0

Z1
ik(β, Ĝk) = m1k(Ĝk)Z

10
i (β0, θ0k) +m2k(Ĝk)/2 Z

20
i (β0, θ0k) + ε̃ik.

Hence,

δi = (π̂ − π0)Δi(β0) + (β̂ − β0)Z
01
i (β0, G0) + π̂m̂11Z

10
i (β0, θ01) + (1 − π̂)m̂12Z

10
i (β0, θ02)

+π̂m̂21/2 Z
20
i (β0, θ01) + (1 − π̂)m̂22/2 Z

20
i (β0, θ02) + εin,

Chen et al. (2008) show that the tightness condition (see Assumption 3.5”) ensures that

εn :=
n∑
i=1

εin = op(1).

Using log(1+δi) ≤ δi−δ2
i /2+δ3

i /3 and the fact that the remainder of the square and cubic

part is at least of the same order as the linear part (cf. Chen et al., 2008), we obtain (3.28).

Repeating the arguments yielding (3.10) shows that the upper bound can be attained and

(3.30) holds. For the expansion of Tmod
0n we again follow Chen et al. (2004) and observe

Tmod
0n = bT1B

−1
11 b1 + op(1),

for b1 ∈ R
q+3 as defined above, since Ĝ

(2)
k are single point distributions on Θ. This implies

m2k(Ĝ
(2)
k ) = m1k(Ĝ

(2)
k )2 for k = 1, 2.

Since B is invertible (at least for large n by Assumption 3.3”) we can decompose b via

orthogonalization, which yields

Tmod
1n = bT1B11

−1bT1 + sup
t2

(
2 tT2 b̃2 − tT2 B̃22 t2

)
+ oP (1)

and hence

Tmod
n = sup

t2∈[0,∞)×[0,∞)

(
2 tT2 b̃2 − tT2 B̃22 t2

)
+ oP (1).

Since Proposition 3.1 also holds for the corresponding quantities in the SRM setup, namely

the bis are defined by (3.27), we have

sup
t2∈[0,∞)×[0,∞)

(
2 tT2 b̃2 − tT2 B̃22 t2

) L→ (1

2
− p

)
χ2

0 +
1

2
χ2

1 + p χ2
2,

where p =
(
cos−1 ρ

)
/(2π) and ρ is the correlation coefficient in the matrix B̃22, which

completes the analysis.
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Proof of Proposition 3.3. The proof follows the one of Proposition 3.2, where the quanti-

ties bi, b̃2i, B
i are now defined in terms of the SRM, in particular bi ∈ R

q+5, b̃2i ∈ R
2,

Bi ∈ R
(q+5)×(q+5). Analogously we define for k = 1, 2

λk = E
[
b1|U1 = k

]
=

∫
b1(y, x)f(y, x; β, θ0k)h(x) dy dx ∈ R

q+5.

An important step in the proof of Prop. 3.2 is (3.37), therefore we need to verify

E
[
Δ1(β0)b1

]
= E

[(
Z1

12(β, θ) − Z1
11(β, θ)

)
b1
]

=

∫
f(y, x; β, θ01) − f(y, x; β, θ01)

fswitch

(
y, x; β0, G0

) b1(y, x)fswitch

(
y, x; β0, G0

)
h(x) dy dx

=

∫ (
b1(y, x)f(y, x; β, θ01) − b1(y, x)f(y, x; β, θ02)

)
h(x) dy dx

= E
[
b1|U1 = 1

]− E
[
b1|U1 = 2

]
= λ1 − λ2.

The remainder of the proof follows from conditional independence of (Yi, Xi)i given (Ui)i,

which holds for HMMs as well as for SRMs, and straight forward calculations as in the

proof of Prop. 3.2.



Chapter 4

Modeling HMMs with flexible

state-dependent distributions

In the previous chapters we discuss statistical inference in HMMs with a given parametric

family of state-dependent distributions. From a data analysis point of view this means

that one chooses a parametric family and further statistical inference is conducted based

on this choice. For many applications this approach is very common and frequently used.

However, estimation and test results are clearly dependent on the chosen parametric family.

In particular, one expects a systematic bias in the estimates in case of misspecifications.

To avoid systemic errors due to the parametric assumptions one may consider HMMs with

more flexible state-dependent distributions (sdfs), for example by applying nonparametric

methods. Let us, for example, consider fitting a two-state Gaussian HMM while the true

sdf of the second state F2 is in fact a skew gamma distribution. For the specific setting

of our simulation study (see Sec. 4.3) we observe that especially the estimator of the

transition probability α21 is strongly influenced by the parametric assumptions:

F2 bias of α̂21 std.dev. of α̂21

normal -0.044 0.064

gamma 0.012 0.057

nonparam. 0.013 0.078

Excerpt of Table 4.2 for the estimator α̂21.

We see that the model with flexible nonparametric sdfs exhibits a bias comparable to the

true parametric model. As expected the estimator is more variable than in the parametric

models.
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In this chapter we investigate methods of modeling HMMs with flexible sdfs and a pre-

specified number of states. In the following, we restrict ourselves to two-state models for

simplicity. Two-state HMMs are reasonably implemented for many applications, for ex-

ample one state might represent the normal status of a system while the other one might

stand for an abnormal situation, e.g. a crisis in financial markets, a major break down in

a transport network etc.

Clearly, the a priori assumption of a two-state model inherits the danger of misspecifica-

tions, when the true model in fact exhibits more states. In principle, this problem occurs

similarly in purely parametric HMMs. But due to the additional flexibility of the proposed

model one should expect that such misspecifications are less transparent and more difficult

to detect, since models with flexible sdfs may capture some of the resulting artifacts. Such

an phenomenon is called masking effect and should not be neglected in the application of

flexible sdfs.

Firstly in the chapter, we propose a two-state HMM with flexible sdfs by assuming that

only for the first state the corresponding sdf comes from a prespecified parametric family

while the sdf corresponding to the second state is given by a finite mixture with components

from the same parametric family. We will see that the standard methods and analytic tools

for HMMs in the classical framework are also applicable for the proposed model.

Secondly, we investigate how nonparametric methods can be used to provide HMMs with

flexible sdfs. In the recent literature semi- and nonparametric techniques in finite mix-

ture models are widely discussed under various constraints, e.g. shape constraints (Chang

and Walther, 2007), symmetry (Bordes et al., 2006a), smoothness (Ma, Gudlaugsdottir

and Wood, 2008). For many applications such quality constraints are plausible and ap-

pear less restrictive than parametric assumptions. We will discuss how these concepts of

semiparametric mixtures can be used for modeling of HMMs.

4.1 An HMM with flexible sdfs:

a parametric approach

We propose a two-state HMM which allows us to model the sdfs or one of the sdfs in a rather

flexible way. We assume that the distribution of one state belongs to some parametric

family while the other distribution is a finite mixture of distributions from the same family.

Such a model gives a more flexible framework compared with the usual parametric two-

state HMM.

We define a two-state HMM with flexible sdfs Mflex. Following the notation in Sec. 1.5
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let (Ui)i be an unobserved stationary and ergodic two-state Markov chain and (Yi)i an

observed process fulfilling the HMM dependency assumptions 1., 2. in Section 1.2. Let

(Fθ)θ be a parametric family of distributions on the observation space Y . In contrast to

the usual assumption that the sdfs Fk = P (Yi ≤ yi|Ui = k) for k = 1, 2 belong to some

parametric family, we consider the HMM with

F1(y) = Fθ1(y)

F2(y) = π̄1Fθ2(y) + . . .+ π̄m̄Fθm̄+1
(y)

with π̄k > 0,
∑m̄

k=1 π̄k = 1 and (Fθi
)1≤i≤m̄+1 ⊂ (Fθ)θ some parametric family. The parame-

ter of the model is therefore

ϑ = (α12, α21, π̄1, . . . , π̄m̄−1, θ1, . . . , θm̄+1).

Let us briefly consider the marginal distribution of the model Mflex

Fmix(y) = π1F1(y) + π2F2(y) = π1Fθ1(y) + π2π̄1Fθ2(y) + . . .+ π2π̄m̄Fθm̄+1
(y)

with (π1, π2) being the stationary distribution of (Ui)i. Clearly, the marginal distribu-

tion is just a m̄ + 1-component mixture w.r.t. the family (Fθ)θ and weights π̃1 := π1,

π̃2 := π2π̄1, . . . , π̃m̄+1 := π2π̄m̄. Since the mapping (π1, π̄1, . . . , π̄m−1) → (π̃1, . . . , π̃m) is one-

to-one (if one excludes π1 = 1), we deduce that from the viewpoint of the marginal distri-

bution the model Mflex just gives a nonstandard parametrization for the m̄+1-component

mixture w.r.t. (Fθ)θ. Analogously, we will see that the proposed model Mflex can be in-

terpreted as an HMM with sdfs from some parametric family with a specific nonstandard

parametrization.

Proposition 4.1. Let (Yi)i be observations from the model Mflex defined above and let

(Ỹi)i be observations from a (m̄ + 1)-state HMM with sdfs Fθ1 , . . . , Fθm̄+1
and transition

matrix ⎛⎜⎜⎜⎜⎜⎜⎝
α11 α12π̄1 α12π̄2 · · · α12π̄m̄

α21 α22π̄1 α22π̄2 · · · α22π̄m̄

α21 α22π̄1 α22π̄2 · · · α22π̄m̄
...

...
...

...

α21 α22π̄1 α22π̄2 · · · α22π̄m̄

⎞⎟⎟⎟⎟⎟⎟⎠ (4.1)

Then, the sequences (Yi)i and (Ỹi)i follow the same law.
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The proof of the proposition is straightforward and outlined in Section 4.4. The proposition

shows that the models of Mflex-type form a subset of (m̄+ 1)-state HMMs with sdfs from

a parametric family, which is defined by the restrictions on the transition matrix displayed

above. Note that a standard (m̄+ 1)-state HMM has (m̄+ 1)2 parameters, while a model

of Mflex-type only has 2(m̄+ 1) parameters.

Based on the fact that the proposed model can be represented as a (m̄+1)-state HMM with

nonstandard parametrization ϑ it is clear that the methods of ML-estimation as discussed

above apply to the Mflex model. Consistency and asymptotic normality of the MLE can

be derived by verifying the assumptions by Leroux (1992b) and Bickel et al. (1998) for

the parametrization ϑ respectively. The sequence
√
n(ϑ̂ − ϑ0) is centered asymptotically

normal, if Assumptions 2.1 - 2.3 are fulfilled, ϑ0 lies in the interior of the parameter space

and if the strong consistency of the MLE, the positive definiteness of the Fisher information

matrix J0 and the ergodicity of the underlying Markov chain hold for the parametrization

ϑ. Note that, the ergodicity property follows from the ergodicity of the two-state Markov

chain and π̄k for all 1 ≤ k ≤ m̄. Note that the number of components or states must be

specified correctly to ensure asymptotic normality, i.e. m̄ must be known. Alternatively m̄

can be estimated for example based on the model selection criteria proposed by Poskitt and

Zhang (2005). Numerical evaluation of the MLE is straightforward when general purpose

methods are used, however for application of an EM algorithm the restrictions on the

transition matrix need to be addressed appropriately.

In summary, it can be stated that the model Mflex is a nonstandard two-state HMM with

quite flexible second sdfs (even for small m̄) and a handy number of parameters, which is

easy to handle and to interpret. In addition, it can be analyzed by means of the theoretical

results available for standard HMMs with sdfs from some parametric family.

4.2 An HMM with flexible sdfs:

a semiparametric approach

As recent publications show the benefit of nonparametric methods in mixture models,

e.g. Chang and Walther (2007), we take semiparametric mixtures as a starting point.

We discuss how these results can be extended to HMMs in terms of identifiability and

estimation via an EM algorithm.
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4.2.1 Semiparametric mixtures

The label of semiparametric mixtures has multiple usage, in particular one needs to distin-

guish whether nonparametric methods enter the model via the sdfs or through the mixing

distribution. In the following we concentrate on the first case. Semiparametric mixtures

build a vivid field of research as many recent publications show. Hall and Zhou (2003) and

Hall et al. (2005) consider multivariate mixtures and observe a reverse ”curse of dimen-

sionality” (Hall and Zhou, 2003), i.e. the number of components m, for which a mixture

is identifiable, increases with the dimension of the observations d. In particular, Hall and

Zhou (2003) show identifiability for the two-component mixture for d ≥ 3 under the key

assumption of independent marginals. Under this assumption one may interpret multivari-

ate observations as blocks of univariate observations for which the additional knowledge is

available that they belong to the same component, i.e. increasing d amplifies the knowledge

about the component membership. For univariate observations Bordes et al. (2006b) and

Hunter et al. (2007) show identifiability of two-components mixtures with location-shift

under the key assumption of symmetric components. Bordes et al. (2006a) and Bordes

and Vandekerkhove (2008) consider two-component mixtures with one known and one

symmetric component.

In addition to the mentioned papers, which prove identifiability of the models and provide

very specific estimation procedures, other contributions motivate their approaches rather

heuristically, but provide quite general estimation procedures based on the EM principle

for models from the world of nonparametric maximum likelihood estimation (NPMLE),

see Ma et al. (2008) for mixtures with components of some degree of smoothness, Chang

and Walther (2007), Eilers and Borgdorff (2007) and Cule et al. (2008) for uni- and multi-

variate mixtures of log-concave densities, Bordes et al. (2007) for mixtures with symmetric

components and Benaglia et al. (2009) for general multivariate mixtures.

4.2.2 Semiparametric HMMs

In the following we discuss how to make use of the mentioned results for HMMs, in partic-

ular we show that identifiability of the marginal mixture of a two-state HMM implies the

identifiability of the HMM parameters and propose an EM algorithm with nonparametric

assumptions on the sdfs.

We consider a stationary, ergodic two-state HMM with parameter ϑ = (α12, α21, F1, F2) ,

α12, α21 ∈ [0, 1], Fk ∈ Fk, k = 1, 2. If F = F1 = F2 denotes a parametric family for which

two-component mixtures are identifiable, then the identifiability of the HMM follows from
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Teicher (1967) as argued by Leroux (1992b). We will see that this also holds true if Fk are

general, possibly nonparametric families of distributions.

Proposition 4.2. Suppose that we have a stationary two-state HMM with ergodic regime,

such that the marginal mixture of the HMM is identifiable, i.e. for π1, π
′
1 ∈ [0, 1], Fk, F

′
k ∈ Fk

for k = 1, 2 with F1,F2 families of distributions on R
d

π1F1(y) + (1 − π1)F2(y) = π′
1F

′
1(y) + (1 − π′

1)F
′
2(y) a.e.

with F1 �≡ F2, F
′
1 �≡ F ′

2 implies π1 = π′
1 and Fk = F ′

k for k = 1, 2. Then the HMM is

also identifiable, i.e. if P
(Yi)
ϑ = P

(Yi)
ϑ′ for ϑ = (α12, α21, F1, F2), ϑ

′ = (α′
12, α

′
21, F

′
1, F

′
2) then

ϑ = ϑ′ holds.

The proof uses the fact that every stationary, ergodic two-state Markov chain is reversible.

Details are deferred to Sec. 4.4. The proposition shows that the identifiability results

established by Hall and Zhou (2003) and Bordes et al. (2006a) for semiparametric two-

component mixtures transfer to two-state HMMs, e.g. an HMM with one fixed and one

symmetric sdf, whose marginal mixture fulfills the conditions of Proposition 2 in Bordes

et al. (2006a), is identifiable.

A standard technique in nonparametric density estimation is NPMLE without and with

penalization, i.e.

f̂ = arg max
f∈F

∑
i

log f(Yi) (4.2)

f̂ = arg max
f∈F

∑
i

log f(Yi) − C Pen(f). (4.3)

Clearly, if F denotes the class of all densities these maximization problems do not have a

solution. However, for the class of monotone densities on the positive real line the Grenan-

der estimator is a prominent example of a unique solution of (4.2). Also for log-concave

densities an NPMLE exists (cf. Rufibach, 2006). A commonly used penalty measuring the

roughness of a function is Pen(f) =
∫

(f ′′(x))2dx (e.g. Silverman, 1982).

We now consider a stationary, ergodic two-state HMM with flexible sdfs Msemi, such that

F1 ∈ F1 = {Fθ|θ ∈ Θ} belongs to some parametric family of distributions with densities

w.r.t. the Lebesgue measure. Let F2 ∈ F2 denote a nonparametric class, e.g. F2 =

{distributions with monotone densities on [0,∞)}. Our aim is to propose an EM algorithm

to fit an HMM of the Msemi-type. We will see that the essential requirement for the

formulation of an EM algorithm for HMMs is the following condition.
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Condition 4.1. Let F2 be a class of distributions and F2 the corresponding class of

densities w.r.t. the Lebesgue measure such that for observations Y1, . . . Yn and for all

weights w1, . . . , wn ≥ 0,
∑

iwi = 1 the unpenalized or penalized maximization problem

arg max
f∈F2

∑
i

wi log f(Yi)

or arg max
f∈F2

∑
i

wi log f(Yi) − C Pen(f)

have a unique solution f̂ ∈ F2.

The EM algorithm for HMMs of Msemi-type

We recall that the log likelihood function of an HMM with m states is given by

Ln(ϑ) = log pn(Y1, . . . , Yn;ϑ) = log
m∑

U1=1

· · ·
m∑

Un=1

pn(U1, . . . , Un, Y1, . . . , Yn;ϑ),

with the complete information likelihood function

pn(u1, . . . , un, y1, . . . , yn;ϑ) = πu1
(ϑ)

n−1∏
i=1

αui,ui+1
(ϑ)

n∏
i=1

fui
(yi;ϑ).

As standard for the EM algorithm we consider iterative maximization of the objective

function

Q(ϑ, ϑ′) = Eϑ′ [log pn(U1, . . . , Un, Y1, . . . , Yn;ϑ)|Y n
1 ]

with Y n
1 = (Y1, . . . , Yn). In the HMM framework Q(ϑ, ϑ′) can be expressed as follows (cf.

Cappé et al., 2005).

Q(ϑ, ϑ′) = Eϑ′
[
log πU1

(ϑ)
n−1∏
i=1

αUi,Ui+1
(ϑ)

n∏
i=1

fUi
(Yi;ϑ)

∣∣∣Y n
1

]
= Eϑ′ [log πU1

(ϑ)|Y n
1 ] +

n−1∑
i=1

Eϑ′
[
logαUi,Ui+1

(ϑ)|Y n
1

]
+

n∑
i=1

Eϑ′
[
log fUi

(Yi;ϑ)|Y n
1

]
= Eϑ′

[ m∑
k=1

1{U1=k} log πk(ϑ)
∣∣∣Y n

1

]
+

n−1∑
i=1

Eϑ′
[ m∑
j=1

2∑
k=1

1{Ui=j,Ui+1=k} logαjk(ϑ)
∣∣∣Y n

1

]
+

n∑
i=1

Eϑ′
[ m∑
k=1

1{Ui=k} log fk(Yi;ϑ)
∣∣∣Y n

1

]
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Q(ϑ, ϑ′) =
m∑
k=1

Eϑ′ [1{U1=k}|Y n
1 ] log πk(ϑ) +

n−1∑
i=1

m∑
j=1

m∑
k=1

Eϑ′ [1{Ui=j,Ui+1=k}|Y n
1 ] logαjk(ϑ)

+
n∑
i=1

m∑
k=1

Eϑ′ [1{Ui=k}|Y n
1 ] log fk(Yi;ϑ).

Note, that taking the conditional expectation of indicator functions just gives conditional

probabilities. These can be computed based on the forward and backward probabilities

(cf. Sec. 2.3.1) as follows

φi|n(k;ϑ
′) := Pϑ′(Ui = k|Y n

1 ) = ai(k;ϑ
′)bi(k;ϑ

′)/L

φi,i+1|n(j, k;ϑ
′) := Pϑ′(Ui = j, Ui+1 = k|Y n

1 ) = ai(j;ϑ
′)αjk(ϑ

′)fk(yi+1; ;ϑ
′)bi+1(k;ϑ

′)/L(ϑ′)

for 1 ≤ j, k ≤ m with L(ϑ′) =
∑m

k=1 ai(k;ϑ
′)bi(k;ϑ

′) for some 1 ≤ i ≤ n.

Let us now consider an HMM of Msemi-type with m = 2 states and the infinite-dimensional

parameter ϑ = (α12, α21, θ, f) where the sdfs are given by f1(y;ϑ) = fθ(ϑ)(y) ∈ (fθ)θ and

f2(y;ϑ) = f(y;ϑ) ∈ F2. Then the objective function Q simplifies to

Q(ϑ, ϑ′) = φ1|n(1;ϑ′) log π1(ϑ) + φ1|n(2;ϑ′) log(1 − π1(ϑ))

+
n−1∑
i=1

φi,i+1|n(1, 1;ϑ′) log(1 − α12(ϑ)) +
n−1∑
i=1

φi,i+1|n(1, 2;ϑ′) logα12(ϑ)

+
n−1∑
i=1

φi,i+1|n(2, 1;ϑ′) logα21(ϑ) +
n−1∑
i=1

φi,i+1|n(2, 2;ϑ′) log(1 − α21(ϑ))

+
n∑
i=1

φi|n(1;ϑ′) log fθ(ϑ)(Yi) +
n∑
i=1

φi|n(2;ϑ′) log f(Yi;ϑ).

From this representation it is clear that the l-th E-step consists of the computation of the

probabilities φi|n(k;ϑ
(l)), φi,i+1|n(j, k;ϑ

(l)). The M-step is carried out by

ϑ(l+1) = arg max
ϑ

Q(ϑ, ϑ(l))

If we assume the initial distribution as fixed, we can obtain explicit expressions for α
(l+1)
12

and α
(l+1)
21

α
(l+1)
12 =

∑n−1
i=1 φi,i+1|n(1, 2;ϑ(l))∑n−1

i=1 φi,i+1|n(1, 1;ϑ(l)) +
∑n−1

i=1 φi,i+1|n(1, 2;ϑ(i))

α
(l+1)
21 =

∑n−1
i=1 φi,i+1|n(2, 1;ϑ(l))∑n−1

i=1 φi,i+1|n(2, 1;ϑ(l)) +
∑n−1

i=1 φi,i+1|n(2, 2;ϑ(l))
.
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If we consider the initial distribution as the stationary one, i.e. π1 = α21/(α12 + α21), one

needs to maximize a quadratic function, which can easily be obtained by standard analytic

or numerical methods. Secondly, we have

θ(l+1) = arg max
{θ∈Θ}

n∑
i=1

φi|n(1;ϑ(l)) log fθ(Yi)

which is simply a weighted MLE with weights φi|n(1;ϑ(l))/
∑n

i=1 φi|n(1;ϑ(l)), that can be

computed easily for many parametric families. In particular, if (fθ)θ is an exponential

family and θ = Eϑ[Yi|Ui = 1] =
∫
yfθ(y)dy one has

θ(l+1) =

∑n
i=1 φi|n(1;ϑ(l))Yi∑n
i=1 φi|n(1;ϑ(l))

.

For the nonparametric component the representation of Q shows that we need to find a

maximizer

f (l+1) = arg max
{f∈F2}

n∑
i=1

φi|n(2;ϑ(l)) log f(Yi), (4.4)

i.e. we need to find a weighted NPMLE with weights φi|n(2;ϑ(l))/
∑n

i=1 φi|n(2;ϑ(l)). Such

an estimator exists and can often be computed as easily as the unweighted version when for

example the class of monotone or log-concave densities is considered. In total the M-step

gives

ϑ(l+1) =
(
α

(l+1)
12 , α

(l+1)
21 , θ(l+1), f (l+1)

)
.

Starting with an initial guess ϑ(0), e.g. provided by a parametric HMM, conducting iter-

atively the E- and M-step yields a sequence of estimators for the Msemi-model ϑ(0), ϑ(1),

ϑ(2), . . .. Our description of the EM algorithm is completed by proposing some determi-

nation rule, e.g. Ln(ϑ
(l+1)) − Ln(ϑ

(l)) < ε or
∥∥ϑ(l+1) − ϑ(l)

∥∥ < ε for some appropriate

norm.

Remark 4.1. Above, the proposed EM algorithm is based on the likelihood function

without penalization. If one considers the log-likelihood function with penalization of a

Msemi model

Ln(ϑ) − C pen(f)

instead, the algorithm remains the same besides the fact that in the M-step in (4.4) f (l+1)

is replaced by the penalized weighted NPMLE

f (l+1) = arg max
{f∈F2}

n∑
i=1

φi|n(2;ϑ(l)) log f(Yi) − C pen(f).
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Remark 4.2. Other choices of F1,F2, e.g. F1 = {F0} as in Bordes et al. (2006a) or

F1 = F2 = {distributions with log-concave densities} as in Chang and Walther (2007), or

additional structure as in location-shift mixture models are also possible and the presented

EM-techniques may extend to those models, but to us the proposed model Msemi with one

parametric and one nonparametric sdf appears most useful in applications of the nature

described above.

Concluding remark

The previous section illustrates how results on semiparametric mixtures can be translated

to the HMM framework, especially to models of Msemi-type. In particular, this enables the

estimation in semiparametric HMMs. However, the section does not bridge the gap between

theoretical results on quite specific models with serious drawbacks in application on one

hand and a general class of models with practicable algorithms lacking of a theoretical

analysis on the other hand. Filling this gap must be a subject of further research in the

field of semiparametric mixtures as well as semiparametric HMMs.

Extensions and outlook

Extensions of the proposed model are possible in several directions. In particular, one

may define models of Msemi-type with m states with m > 2, of which m − 1 sdfs follow

parametric models. In this case selecting m via model choice procedures as discussed in

Chapter 3 becomes a relevant task. The theoretical analysis of these extensions seems to

be a hard problem, also the practical applicability needs to be investigated. In particular,

masking effects resulting in an underestimation of m are expected due to the high flexibility

of the model.

It remains a challenging task to derive asymptotic results for the Msemi-model in the HMM

context as well as for corresponding finite mixture models. Bordes and Vandekerkhove

(2008) take a first step in this direction, but their techniques appear to be quite specific.

Based on the asymptotic analysis a test theory enabling testing hypotheses on the parame-

ters would be a desirable goal as well as validation techniques for parametric assumptions.

4.3 Simulation experiments

In this simulation study we illustrate the previously introduced methods for two different

scenarios both motivated by applications. We concentrate on univariate continuous models.
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A waiting time model with contaminations

At first we consider a waiting time model with normal contaminations given by an HMM

M1 with transitions α12 = 0.2, α21 = 0.3, an exponential sdf with λ = 1 in state one and

a Gaussian sdf with μ = 4, σ = 1 in state two. The marginal density of the model is

displayed in Fig. 4.1. Analyzing the exon length distribution in the human genome, Ma

et al. (2008) propose comparable models based on semiparametric mixtures.

In our study we simulate N=100 samples each of size m = 500 from M1 and perform

estimation under several model assumptions on the families of densities of the sdfs F1, F2:

• M1par denotes the true parametric model, i.e.

F1 = Fexp =
{
fλ(x) = λ exp(−λx)1{x>0}|λ > 0

}
F2 = Fnorm =

{
fμ,σ2(x) = 1/(σ

√
2π) exp(−(x− μ)2/(2σ2))|μ ∈ R, σ2 > 0

}
.

• M1LC denotes the semiparametric model with log-concave component, i.e.

F1 = Fexp, F2 = {f densities | log(f) concave } .

• M1Mon denotes the semiparametric model with monotone component, i.e.

F1 = {f monotone densities } , F2 = Fnorm.

While for the parametric model the MLE is evaluated using numerical maximization based

on the R (R Development Core Team, 2009) function nlm, this is not feasible for semi-

parametric models. Therefore we perform estimation for the semiparametric models using

the EM algorithm proposed above. As one should investigate the sensitivity of the EM al-

gorithm w.r.t. starting values, in particular for the nonparametric component, we consider

in addition to the true values as starting values also the density of the uniform distribution

on [0,max(Yi)] as f (0). In our simulations the proposed EM does not appear very sensitive

in our settings. For the evaluation of the weighted NPMLE which needs to be performed

in each M-step (cf. Eq. (4.4)) the package logcondens by Rufibach and Dümbgen (2009)

is used for the M1LC model with minor modifications. Note, that the weighted NPMLE

over the class of log-concave densities exists uniquely and its logarithm is a linear spline

(cf. Rufibach, 2006). Based on the function isoMean in the package logcondens one can

also perform the M-step for the M1Mon model. Here a weighted Grenander estimator

needs to be computed, which is given by the left derivative of the least concave majorant

of the weighted distribution function
∑n

i=1wi1(−∞,t](Yi) with weights wi ≥ 0,
∑

iwi = 1
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(cf. van der Vaart, 1998, Lemma 24.5.). We determine the EM algorithm with the stopping

rule

Ln(ϑ
(l+1)) − Ln(ϑ

(l)) < ε = 10−6 or l ≥ L := 100.

In Figures 4.1-4.2 we display the histogram of one sample from M1 and the marginal

densities of the true and estimated models. In Figure 4.3 the nonparametric component
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Figure 4.1: Histogram of a sample from

M1 with the marginal densities of the

M1LC model (solid), the M1par model

(dashed) and the true model (thin line).
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Figure 4.2: Histogram of a sample from

M1 with the marginal densities of the

M1Mon model (solid), the M1par model

(dashed) and the true model (thin line).

of the model M1LC is displayed and Figure 4.4 shows the nonparametric component for

the model M1mon. In both plots the parametrically estimated and the true densities are

added.

The simulation results are displayed in Table 4.1. They show that the semiparametric

Table 4.1: Simulated estimators for the models M1par, M1LC and M1mon. The mean and

the standard deviation (in brackets) of the estimators are displayed.

α12 α21 λ μ σ

true 0.200 0.300 1.000 4.000 1.000

M1par 0.204 0.302 1.006 3.992 0.987

(0.031) (0.040) (0.097) (0.098) (0.079)

M1LC 0.206 0.300 1.023 - -

(0.031) (0.040) (0.099) - -

M1mon 0.175 0.287 - 3.993 0.959

(0.034) (0.041) - (0.105) (0.081)
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Figure 4.3: Histogram of a sample from

M1 with the weighted density (1 − π̂)f̂

of the nonparametric sdf of the M1LC

model (solid). The weighted densities of

the M1par model (dashed) (1− π̂)fμ̂,σ̂ and

the true model (thin line) (1−π0)fμ0,σ0
are

added.
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Figure 4.4: Histogram of a sample from

M1 with the weighted density π̂f̂ of the

nonparametric sdf of the M1Mon model

(solid). The weighted densities of the

M1par model (dashed) π̂fλ̂ and the true

model (thin line) π0fλ0
are added.

HMMs deliver in general results which are comparable to the fully parametric model, in

terms of the transition probabilities and the remaining parametric component, i.e. λ in

M1LC and (μ, σ2) in M1Mon. We see that in the model M1Mon the transition probabilities

are slightly underestimated. The variances exhibit a small increase for the semiparametric

models.

An HMM with a skew component

Secondly, we consider an HMM with a skew component M2 given by the same transition

probabilities as above α12 = 0.2, α21 = 0.3, a Gaussian sdf with μ = 7, σ = 1 in state

one and a gamma sdf with α = 3, β = 1/2 in state two. Note that for X ∼ Γ(α, β) with

α = 3, β = 1/2 one has E[X] = α/β = 6, V [X] = α/β2 = 12 and skewness ν(X) =

2/
√
α =

√
6/3 ≈ 0.82. The marginal density of the model is displayed in Fig. 4.5.

The proposed model seems suitable to the data sets considered in Güttler (2006) where

delay time differences from railway data collected for eight high speed tracks are under

investigation. Capturing the dependence structure of such data sets as it is possible using

HMMs could give insights to the nature of delay times and their development over time.

As above we simulate N=100 samples each of sizem = 500 from M2 and perform estimation

under several model assumptions on the families of densities of sdfs F1, F2:
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• M2par denotes the true parametric model, i.e.

F1 = Fnorm, F2 = Fgamma =
{
fα,β(x) = xα−1βα/Γ(α) exp(−βx)1{x>0} |α, β > 0

}
.

• M2norm denotes a parametric model under normality assumption (misspecified), i.e.

F1 = F2 = Fnorm.

• M2LC denotes the semiparametric model with a log-concave component, i.e.

F1 = Fnorm, F2 = {f densities | log(f) concave } .

• M2flex denotes the parametric model Mflex with m̄ = 2 under normality assumption

(misspecified), i.e.

F1 = Fnorm, F2 = Fnorm { densities of Gaussian two component mixtures } .

The simulation settings are the same as for M1. Again the R package logcondens is used to

evaluate the weighted NPMLE for the EM algorithm of the semiparametric model M2LC.

The sensitivity w.r.t. starting values was investigated and can be considered as minor.

The starting values for the M2flex model we choose π̄ = 1/2, μ̄2 = 3, μ̄1 = 9, σ̄1 = σ̄2 = 2

leading to similar mean and variance as the true sdf of the state two.

In Figures 4.5-4.6 we display the histogram of one sample from M2 and the marginal

densities of the true and estimated models. In Figure 4.7 the nonparametric component

of the model M2LC is displayed and Figure 4.8 shows the nonparametric component for

the models M2flex and M2norm. In both plots the parametrically estimated and the true

densities are added.

The simulation results are displayed in Table 4.2. The results show that the semiparametric

model M2LC gives almost as accurate results as the parametric model under the true

parametric assumptions M2par, in particular the estimated variances for M2LC exceed the

variances for M2par only slightly. The parametric model under the misspecified Gaussian

assumption M2norm captures the expectation and variance of the sdf of the state two

surprisingly well. Only the estimator α̂21 exhibits a strong negative bias.

The sample displayed in Fig. 4.8 indicates for the Mflex-model the tendency of the sdf of

state two to be split into two components left and right of the sdf of state one. This seems

to be the reason for the strong negative bias of α̂12 and the strong positive bias of α̂21.



4.3. Simulation experiments 117

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 4.5: Histogram of a sample from

M2 with the marginal densities of the

M2LC model (solid), the M2par model

(dashed) and the true model (thin line).
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Figure 4.6: Histogram of a sample from

M2 with the marginal densities of the

M1flex model (solid), the M2par model

(dashed), the M2norm model (dashed dot-

ted) and the true model (thin line).
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Figure 4.7: Histogram of a sample from

M2 with the weighted density (1 − π̂)f̂

of the nonparametric sdf of the M2LC

model (solid). The weighted densities of

the M2par model (dashed) (1− π̂)fα̂,β̂ and

the true model (thin line) (1−π0)fα0,β0
are

added.
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Figure 4.8: Histogram of a sample from

M2 with the weighted densities (1− π̂)f̂μ̂,σ̂

of the sdf of the M2norm model (dashed

dotted) and (1 − π̂)f̂flex of the sdf of

the M2flex model (solid). The weighted

densities of the M2par model (dashed)

(1− π̂)fα̂,β̂ and the true model (thin line)

(1 − π0)fα0,β0
are added.
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Table 4.2: Simulated estimators for the models M2par, M2norm, M2LC and M2flex. The

mean and the standard deviation (in brackets) of the estimators are displayed. For the

model M2norm the mean of the estimators μ2, σ2 are reported instead of α, β.

α12 α21 μ σ α β

true 0.200 0.300 7.000 1.000 3.000 0.500

M2par 0.206 0.312 7.011 0.974 3.031 0.509

(0.043) (0.064) (0.073) (0.066) (0.345) (0.062)

M2norm 0.217 0.256 6.972 0.933 6.164 3.295

(0.049) (0.057) (0.081) (0.069) (0.231) (0.327)

M2LC 0.202 0.313 7.011 0.976 - -

(0.041) (0.078) (0.080) (0.073) - -

M2flex 0.186 0.414 6.987 1.031 - -

(0.033) (0.121) (0.089) (0.104) - -

Concluding remark

In general, our simulations show that semiparametric HMMs are applicable via the pro-

posed EM procedure. Although it is not known whether the considered models are iden-

tifiable, reasonable estimates have been obtained. In conclusion our study confirms the

evident fact that the correctly specified parametric model is superior over the semipara-

metric model, while the semiparametric model seems superior over the incorrectly specified

parametric models. Hence in situations where parametric assumptions are questionable,

using the proposed methods might be advantageous.

However, we should point out that the simulation results should not be overgeneralized.

Clearly, the performance of semiparametric methods does depend on the specific models,

in particular the shape of the marginal density.

4.4 Proofs

Proof of Proposition 4.1. We denote the unobserved variables as follows: as above (Ui)i

denotes the two-state Markov chain of the Mflex model, (Ūi)i denotes the unobserved

component in the mixture F2, i.e. Ūi ∼ Mult(π̄), and (Ũi)i denotes the (m̄ + 1)-state

Markov chain of the HMM (Ỹi)i. We set A1 = {Ui = 1}, Ak+1 =
{
Ui = 2, Ūi = k

}
for

k = 1, . . . , m̄ and Bk =
{
Ũi = k

}
for k = 1, . . . , m̄ + 1. Clearly (Yi) and (Ỹi) follow the
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same law, if P (Bk|Bj) = P (Ak|Aj) for all j, k = 1, . . . , m̄+ 1. This holds, if

P (Ũi+1 = 1|Ũi = 1) = P (Ui+1 = 1|Ui = 1) = α11

P (Ũi+1 = k + 1|Ũi = 1) = P (Ui+1 = 2, Ũi+1 = k|Ui = 1) = α12π̄k

P (Ũi+1 = 1|Ũi = k + 1) = P (Ui+1 = 1|Ui = 2, Ũi = k) = α12

P (Ũi+1 = k + 1|Ũi = j + 1) = P (Ui+1 = 2, Ũi+1 = k|Ui = 2, Ũi = j) = α22π̄k

for 1 ≤ j, k ≤ m̄, which leads to the transition matrix (4.1).

Proof of Proposition 4.2. Let ϑ = (α12, α21, F1, F2), ϑ
′ = (α′

12, α
′
21, F

′
1, F

′
2) two parameteri-

zations for an HMM leading to the same law P
(Yi)
ϑ = P

(Yi)
ϑ′ . Since the marginal mixture of

the HMM is identifiable, Pϑ(Y1 ≤ y1) = Pϑ′(Y1 ≤ y1) a.e. implies π1 = π′
1 for the station-

ary distribution and for the sdfs Fk = F ′
k for k = 1, 2. Hence it remains to show that the

transition probabilities also coincide. Since stationary two-state HMMs are reversible one

has π1α12 = π2α21 such that it suffices to show α′
12 = α12. Since F1 �≡ F2 we find y1, y2

such that F1(yi) �= F2(yi) for i = 1, 2 and compute

Pϑ(Y1 ≤ y1, Y2 ≤ y2)

= π1α11F1(y1)F1(y2) + π1α12F1(y1)F2(y2) + π2α21F2(y1)F1(y2) + π2α22F2(y1)F2(y2)

= π1(1 − α12)F1(y1)F1(y2) + π1α12F1(y1)F2(y2)

+π2α21F2(y1)F1(y2) + π2(1 − α21)F2(y1)F2(y2)

= π1F1(y1)F1(y2) + π2F2(y1)F2(y2) + π1α12 (F1(y1)F2(y2) − F1(y1)F1(y2))

+π2α21 (F2(y1)F1(y2) − F2(y1)F2(y2))

= π1F1(y1)F1(y2) + π2F2(y1)F2(y2)

+π1α12 (F1(y1)F2(y2) − F1(y1)F1(y2) + F2(y1)F1(y2) − F2(y1)F2(y2))

= π1F1(y1)F1(y2) + π2F2(y1)F2(y2) + π1α12 (F1(y1) − F2(y1)) (F2(y2) − F1(y2)) .

Since (F1(y1) − F2(y1)) (F2(y2) − F1(y2)) �= 0 this yields

α12 =
Pϑ(Y1 ≤ y1, Y2 ≤ y2) − π1F1(y1)F1(y2) − π2F2(y1)F2(y2)

π1 (F1(y1) − F2(y1)) (F2(y2) − F1(y2))
.

As the same calculation holds true for Pϑ′(Y1 ≤ y1, Y2 ≤ y2) we obtain α12 = α′
12.
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