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Chapter 1

Introduction

Linear mixed models are a powerful inferential tool in modern statistics. They are widely
used to model data with different sources of variability, including temporal, spatial and spatio-
temporal data. Recent advances utilize the connection between penalized spline smoothing
and mixed models for efficient implementation of nonparametric and semiparametric regression
techniques.

Nonparametric regression is aimed at reaching more adequate and realistic regression mod-
els. Simple linear regression assumes that the relationship between a response variable y and
covariates z1, ..., , can be described by

E[y] - ﬁO +ﬁl$1 "’"""ﬁp%ﬂ

with some unknown parameters ;. However, the linearity and additivity assumption is often
too restrictive in realistic settings. Nonparametric regression replaces the linear predictor by
an unspecified function m(-), such that the assumption is relaxed to

Ely] = m(xq, ..., xp).

Mixed model penalized splines are a flexible and efficient tool for estimation of the unknown
underlying function m(-). They have the added advantage of allowing for straightforward
inclusion of additional random effects into the model, such as for longitudinal data. Mixed
model penalized splines are widely used and have been extended to many types of models
previously limited to linear predictors, such as generalized or survival models.

While linear mixed models have found versatile use in practice, inference for these models is
not equally well developed. In particular, inference for random effects is so far limited to certain
subclasses of models, or is based on computationally expensive bootstrap procedures. This
lag in methodological development is due to the non-standard nature of the testing problem.
First, when testing for zero random effects variances, the tested parameter is on the boundary
of the parameter space under the null hypothesis. Second, in linear mixed models observations
are generally not independent. While in longitudinal linear mixed models there are at least
independent subjects or units, such a subdivision of the data is not possible for mixed model
penalized spline smoothing.

This dissertation is aimed at developing valid and computationally feasible methodology
for inference on random effects in linear mixed models, and at improving our understanding
of the effects of boundary setting and lacking independence. We are particularly interested
in the important special case of testing for polynomial regression against a general smooth
alternative modeled by mixed model penalized splines. All methods are motivated by and



applied to the Airgene study on air pollution health effects, where inference on the shape of
air pollution dose-response functions is relevant.

This dissertation consists of two parts. The first part, comprising Chapters 2 and 3, lays the
ground work. We give a short review of linear mixed model methodology and its connection to
longitudinal data and penalized spline smoothing. We also introduce the longitudinal Airgene
study and discuss implementation and application of appropriate additive mixed models.

The second and main part, consisting of Chapters 4 to 7, is concerned with methodology for
inference in linear mixed models. In particular, we deal with inference on random effects, and
the important special case of testing for polynomial regression using mixed model penalized
splines.

In Chapter 4, we investigate the asymptotics of restricted likelihood ratio testing for poly-
nomial regression using mixed model penalized splines. We consider two commonly used
penalized spline bases, namely truncated polynomials and B-splines. We find that the two are
equivalent for restricted maximum likelihood estimation with corresponding penalty and knots,
but are not equivalent for maximum likelihood estimation. For both mixed model penalized
splines, we show that the asymptotic results on boundary testing for independent observa-
tions do not hold, even when the number of spline knots increases to infinity with the sample
size. This is due to the asymptotic non-normality of the score statistic. Fundamentally, this
is caused by the dependence of observations induced by mixed model penalized splines. We
find that this dependence structure cannot be avoided in penalized spline smoothing, as it is
inherently necessary for the attainment of smooth curves. A different approach to this testing
problem is thus necessary.

In Chapter 5, we therefore develop finite sample alternatives for testing for zero random
effect variances in linear mixed models. The class of models we consider is more general than
has previously been covered. In particular, it includes nonparametric smoothing as well as
models with moderate numbers of clusters or unbalanced designs. We also allow more than
one random effect in the model. We propose two approximations to the finite sample null
distribution of the restricted likelihood ratio test statistic. Extensive simulations show that
both outperform the chi-square mixture approximation and parametric bootstrap currently
used. In Chapter 6, we compare the procedures based on the restricted likelihood ratio test
to several other tests. We find that our fast finite sample approximation is comparable to
the best bootstrap-based competitors with regard to power and adherence to the alpha-level,
while reducing computation time from hours to seconds.

Lastly, we discuss alternatives to testing for mixed model penalized splines in Chapter 7.
In model selection, information criteria are also often used to decide between polynomial and
smooth terms. We investigate the Akaike Information Criterion (AIC) based on the marginal
likelihood. We show that the AIC is not asymptotically unbiased for the expected relative
Kullback-Leibler distance. In fact, it is biased towards the simpler model. There is a close
correspondence between the boundary effects on likelihood ratio testing and on the AIC.
Contrary to these tests, however, the AIC cannot be adapted to the boundary setting. An
alternative is provided using our results on restricted likelihood ratio testing.

In our conclusion, Chapters 8 and 9, we summarize the main findings gained from applying
our methods to the Airgene study, and close with a discussion and outlook.
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The main results of this dissertation can be summarized as follows:

1. The asymptotics for testing for polynomial regression using mixed model penalized splines
are different from the asymptotics for boundary testing with independent observations.
This is due to the non-ignorable and unavoidable dependence structure induced by pe-
nalized splines.

2. We provide a finite sample alternative for inference on random effects in general, and
on mixed model penalized splines in particular. Our approximation is computationally
efficient, exact for models with one random effect, and shows power and adherence to
the alpha-level comparable to the best bootstrap-based competitors.

3. Our method is also an alternative to model selection for random effects based on the
marginal Akaike Information Criterion. This criterion is not asymptotically unbiased for
the expected relative Kullback-Leibler distance, and is in fact biased towards the simpler
model.

This dissertation is based on
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Chapter 2

Mixed Models, Longitudinal Data
and Penalized Spline Smoothing

This chapter gives a brief introduction to the topics this dissertation is based on. We will
introduce the linear mixed model, define notation necessary for later chapters, and shed light on
the connections of linear mixed models with longitudinal data and penalized spline smoothing.
Section 2.1 introduces the linear mixed model and discusses the special case of longitudinal
mixed models. Section 2.2 discusses the nonparametric regression problem and shows how
mixed models can be used for penalized spline smoothing.

2.1 Mixed Models and Longitudinal Data

2.1.1 The Linear Mixed Model

The linear mixed model can be defined as the model
y=XpB+Zb+e, (2.1)

where y = (y1,...,ys) is a vector of n observable random variables, X and Z are known
matrices containing explanatory covariates, 3 is a vector of unknown fixed parameters, b a
vector of random effects, and € is a vector of unobservable random errors. The assumptions
are independence of b and ¢, and

e(2)=(0) = (2)-(T &) 22)

Model (2.1) with assumption (2.2) can also been seen as the conditional formulation of the
mixed model, stating the assumptions for both b and ylb: b ~ (0,D) and
ylb ~ (XB + Zb,R), where z ~ (u,X) denotes E(z) = p and Cov(z) = X. For in-
ference in model (2.1), however, often the marginal model formulation

y~(XB,ZDZ' + R) (2.3)

is used. The two models are not equivalent, but (2.1) implies (2.3). Also, for inference in
model (2.1), b and e are typically assumed to follow multivariate normal distributions with
means and covariance matrices as specified in (2.2).

Extensions to generalized linear mixed models will not be discussed here; see for example
McCulloch and Searle (2001); Molenberghs and Verbeke (2005).

In the following, let @ denote the vector of unknown parameters contained in D and R.

4
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2.1.2 Longitudinal Data

Mixed models are commonly used to model longitudinal data, where a response variable ¥ is
measured for a number of subjects or units repeatedly over time (see, for example, Verbeke
and Molenberghs, 2000, for a good overview, and Diggle et al., 1994, also for a contrast with
other methods for longitudinal data analysis).

Models for longitudinal data have to take into account the correlation that is present
among data on the same unit, which might also depend on the time interval between the
measurements. They should adequately model the different sources of variability in the data,
namely between units, within units over time, and additional variability due for example to
measurement error. A mixed model for longitudinal data is often formulated on the individual
level,

yi=XiB+ Z;b; + €, (2.4)

(Laird and Ware, 1982), where y; = (yi1, - - ., Yin,) contains the n; responses of unit i, X;
and Z; its covariates, and &; = (gi1,...,&in,) ~ (0, R;) or €; ~ N(0, R;). While 3 are
common regression parameters, the b; are individual regression parameters for the ith unit
assumed to be distributed as b; ~ (0, D) or b; ~ N(0, D). Random effects b; are commonly
used to model differences between units when these units can be regarded as a random sample
from an underlying population, while fixed effects are often, though not always, used otherwise
(McCulloch and Searle, 2001).

(2.4) is a special case of model (2.1), where y can be divided into independent subvectors
y;, and D and R are block diagonal matrices with diagonal blocks D respectively R;. The
form (2.1) can be obtained by stashing the y;, X;, b; and &; on top of each other to obtain
vy, X, b and g, and letting Z be the block diagonal matrix with blocks Z; on the diagonal.
Then, V := Cov(y) = ZDZ' + R is also block diagonal, indicating the independence of
different units 1.

Together, Z, D and R define the correlation structure among observations on the same
unit. Common examples for Z include a random intercept design matrix, where Z contains
a separate intercept column for each unit. Then, D = o2. If R; = 021, for each i, V has
a compound symmetry structure, with values o7 + o2 on the diagonal, and values o7 on the
off-diagonal entries within each block. This means that all pairs of observations on the same
unit have the same correlation (o7 +02)/0o2. Common extensions include columns for random
slopes in Z, where D can also include a correlation parameter between the random intercept
and slope. Additionally, R; can be used to model correlations between observations on the
same unit that are not constant, but rather decreasing with distance between measurements.

2.1.3 Estimation and Prediction

Inference in model (2.1) is usually carried out using the marginal model (2.3). For a given
parameter 0, the fixed effects vector 3 can be estimated as

B=(X'V'X) X'V ly, (2.5)

provided the respective inverses exist. This will be assumed in the following. This estimate
is the weighted (or generalized) least squares estimate, and it is also the maximum likelihood
estimate under the normality assumption. Additionally, 3 is the best linear unbiased estimator
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(BLUE) of 3, and the best unbiased estimator under the normality assumption (see Zyskind
and Martin, 1969; Harville, 1976, for more general results).
For the random effects b, the best linear unbiased predictor (BLUP) is

b=DZ'V~'(y—- Xp), (2.6)

which is also the best unbiased predictor under the normality assumption (Harville, 1976).
Here, unbiasedness refers to E(b) = E(b) = 0, linearity is linearity in y, and the best (linear)
unbiased predictor is the one minimizing the mean squared error E[(b—b)?] among all (linear)
unbiased predictors b for b. The term predictor is used to denote that the target of b is random,
to distinguish it from estimators of fixed effects. However, we will also use the term as an
umbrella term for both BLUP and BLUE. Harville (1976) also discusses best linear unbiased
prediction of linear combinations of 3 and b. Robinson (1991) reviews several other possible
derivations for the BLUP, including Henderson's Justification (Henderson, 1950). Henderson

maximizes the joint density of y and b assuming normality, yielding the minimization problem

min (y— XB—Zb)R '(y— XB— Zb) + bD b, (2.7)

which can be shown to result in the BLUPs (2.5) and (2.6) using
V'=R'-R'Z(ZR'Z+D ')'ZR! (2.8)
(Henderson et al., 1959).

Both B3 and b are derived from model (2.1) for known parameters 6. As 0 is generally
unknown, it has to be estimated as well. Two main methods are typically used for estimation
of 8, namely maximum likelihood (ML) or restricted (residual) maximum likelihood (REML).

The ML estimate @ for @ under the normality assumption is obtained by maximizing the
log-likelihood for model (2.3),

((8.0) =~ log(2m) — 3 loa(det(V)) 2y~ XB)'V"'(y ~ Xp).
Substituting the ML estimate 3 = (3(0) as defined in (2.5) for 3, the resulting profile log-
likelihood ¢p(6) can be maximized to obtain the maximum likelihood estimate 6. The ML
estimate for (0, 3) then is (8, 3(0)). In general, there is no closed form solution for 6 and
the maximization has to be done numerically (Harville, 1977).

ML estimation, however, is known to be biased downward for variances. This property is
already known from linear regression, where the ML estimate for the residual variance is the
sum of squares divided by the sample size n. The usually used unbiased estimate conversely
divides the sum of squares by n — p, with p the number of columns in the design matrix X.
(We assume that X has full rank for simplicity.) This estimator can also be derived as the
restricted maximum likelihood estimator, a likelihood-based estimator that takes the loss in
degrees of freedom resulting from estimation of the fixed effects into account. Patterson and
Thompson (1971) discussed the problem of variance parameter estimation and proposed to
maximize not the full likelihood, but the likelihood of certain error contrasts. The method was
later termed restricted maximum likelihood estimation (Harville, 1977). The idea is to use the
likelihood of n — p linearly independent error contrasts Ay, such that E(Ay) = AX3 =0
and the resultant likelihood does not depend on the fixed effects. Harville (1974) shows that
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the resulting log-likelihood is independent, up to an additive constant, of the precise error
contrast used. Possibilities include A = T — X (X'V"'X)"' X'V !, hence the second name
residual maximum likelihood. Harville (1974) also derives the corresponding log-likelihood,

1(8) = const — %log(det(V)) - %log(det(X'V_lX)) - %(y X3V iy - XB),

where B is defined in (2.5). Thus, up to an additive constant,
1(0) = ((3(0),6) — %log(det(X'VlX)) = (p(0) — %log(det(X’VlX)).

Cressie and Lahiri (1993) note that the estimating equations for @ resulting from maximiza-
tion of /(@) are unbiased, while the corresponding equations using ¢(0) are not. This helps
explaining the smaller bias of REML estimates compared to ML estimates in smaller samples.

The ML or REML estimate 6 can be used subseqyently to obtain values for the BLUE and
BLUP defined in (2.5) and (2.6). If we denote by V' and D the matrices V' and D with 0
replaced by 6, the estimated BLUE (EBLUE) and estimated BLUP (EBLUP) are defined as

~ A A —1 -1 ~—1
B(6) = (X’V X) XV 'y and
b(0) = DZ'V '(y-XpB(9))
respectively. Variability in the EBLUE and EBLUP thus stems from both estimation of 3 and

b, as well as estimation of 8. Both sources of variability should be taken into account for
inference.

2.1.4 Inference for Fixed Effects

In this and the next section, we will assume normality of € and b. For known @, we then have
that 3 ~ N(8, (X’V’lX)fl). The simplest approximation to the variance of 3(8) thus is

~—1 -1 . : e : o
(X'V X) , although this does not take into account the variability inherent in estimation

of 0 and underestimates standard errors for the 3;(8) coefficients.
An approximate Wald test for the linear hypothesis

Hy:LB=0 versus Hy:LB#0 (2.9)
could then be constructed using the Wald test statistic
. . -1,
W =431 [L (X’V 1X> L’} L3

with an asymptotic chi-square distribution with rank(L) degrees of freedom (Verbeke and
Molenberghs, 2000). However, not only might X'V X be a poor estimate of Cov(3(6))

especially for small sample sizes, but also is the asymptotic distribution
R - =
Ar|L(xv X)L| L84l

so far lacking a theoretical foundation save in special cases (Ruppert et al., 2003). This is
due to the complications arising from the random effect induced dependence in y (see model

(2.1)).



