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The important thing in science is not so much to obtain new facts

as to discover new ways of thinking about them

— Sir William Bragg

Chapter 1

Introduction

Proteins are biological macromolecules, which are mainly composed from polymeric chains of amino

acids[1]. They are involved in a diversity of processes in living organisms. Although some play

a mere structural role (e.g., collagen in tissues, or α-keratin in hair), the function of most others

depends crucially on their dynamics. While for the many examples of motor proteins (e.g., kinesin

and F1-ATPase) the connection to dynamics is obvious, the dynamics also plays an important role if

primary function is not mobility itself. For example, the ability to change conformation is essential for

the function of proteins involved in signal transduction or transport, for molecular recognition, e.g.,

in the immune system, and for the function of numerous enzymes[1]. In many enzymes, for instance,

conformational changes serve to enclose the substrate, thereby preventing its release from the protein

and optimally positioning it for the protein to perform its function, as in lysozyme.

To understand the mechanisms of protein function is an intriguing and formidable task. Although

remarkable progress has been made in past decades, and despite the number and quality of available

methods has been tremendously increased, most mechanisms are not understood on a physical basis,

which would require models based on first principles allowing for a quantitative comparison with

experimental results.

Experimental techniques made remarkable progress to unravel protein structures (e.g., Xray

crystallography[2, 3] and nuclear magnetic resonance spectroscopy (NMR)[4, 5]) and, furthermore,

even allow to probe dynamics (NMR relaxation[6], electron paramagnetic resonance (EPR)[7],

neutron scattering[8, 9], as well as fluorescence spectroscopy[10]). In some instances different

functional states of proteins were structurally characterized by trapping them in certain substates[11].

Furthermore, time-resolved Xray diffraction[12, 13] allows to follow the conformational protein

motion with picoseconds time resolution. Wide-spread use of the latter two techniques is impeded,

though, by the massive experimental effort involved.

In comparison to this tremendous experimental progress and the enormous variety of available

techniques the theoretical treatment of protein dynamics strikes as underdeveloped. Only computer

simulation techniques, and especially molecular dynamics (MD) simulations at atomic resolution,
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have been applied with noteworthy success to elucidate functional processes in recent years[14].

Therefore, advancements of theoretical methods and concepts are urgently required.

As will be described in Chapter 2, classical MD is an atomistic simulation method, which treats

each atom as point mass and describes the interaction between atoms with simple force terms. Tra-

jectories are generated by integrating Newton’s equations of motions. It operates in the full 3N

dimensional configurational space of the protein and the surrounding solvent molecules (where N is

the number of atoms). The large number of pair-wise interactions to be evaluated and the short time

steps enforced by the fastest motions entail very long computation times, which limits MD at present

to systems of 105 − 106 atoms and to timescales of several 100ns. Unfortunately, apart from a few

exceptions, relevant biological processes, such as the gating of ion channels, allosteric interactions,

ligand binding, molecular recognition, chemo-mechanical energy conversion and many more, occur

on microsecond to seconds time scales, and thus are currently far out of reach for conventional MD.

This holds true despite considerable efforts to speed up the computations, particularly of the

long-range Coulomb forces. Recent developments include efficient methods such as multiple step

algorithms[15, 16, 17, 18, 19, 20], fast multipole methods[21, 22, 23, 24], and Ewald summation

techniques[25]. Also, the use of constraints[26, 27, 28] helps to increase efficiency. Still, however,

processes on time scales of microseconds and beyond can only be studied by resorting to certain

’tricks’ to enhance sampling by speeding up conformational motions, as reviewed in Ref. [29]. Un-

fortunately, this kind of accelerated sampling necessarily implies loss of dynamical information and

often loss of thermodynamical accuracy as well[29].

Statistical mechanics is the appropriate theoretical framework to understand the dynamics of

many-particle systems such as proteins. One considers a macroscopic state as statistical ensemble

of a large number of replica of a microscopic system, which evolve independently from each other.

Macroscopic observations of relevant degrees of freedom are obtained by averaging the remaining

ones over the statistical ensemble. The applied averaging yields energetics, which are influenced by

entropic contributions, and hence free energies need to be considered. Seen from this perspective,

protein function and the corresponding highly controlled conformational motions are driven by free

energy differences between different substates of the solvated protein.

MD simulation, however, is not intrinsically a statistical mechanics approach, since it describes

protein dynamics from a microscopic point of view. Rather, it is used as a ’brute-force’ method

to generate statistical ensembles. Although a statistical mechanics treatment can be attached to the

MD results, this modus operandi impedes profiting from the elegance of this framework. It remains

thus challenging to ’go the whole way’ and consistently treat relevant degrees of freedom of protein

dynamics with statistical mechanics.

In this thesis we advance the methodology beyond conventional ’brute force’ MD by applying

statistical mechanics to gain a drastic reduction of the large number of degrees of freedom. This

implies two steps. First, to identify few appropriate slow and relevant degrees of freedom[30], which

serve to define a reduced active space within which the dynamics is evolved without explicit treatment
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of the remaining orthogonal fast degrees of freedom. Second, to derive suitable equations of motion

for these slow degrees of freedom.

As an illustration of our approach consider the well-known dimension reduced treatment of the

motion of a Brownian particle, which is also based on a separation of slow and fast degrees of freedom.

A Brownian particle is a large solute particle immersed in a fluid of much smaller particles, e.g.,

water. Its macroscopic erratic movement is the combined result of a large number of collisions with

fluid particles. Because the motion of the macroscopic particle is much slower than that of the fluid

particles, one can consider the slow and fast motions as uncorrelated. This justifies to treat the solvent

coordinates as irrelevant and thus to replace their influence on the slow degree of freedom by a random

force, which is memory free due to the separation of timescales. In contrast to our work described

below, the trajectory of the Brownian particle is a random walk and can thus be described by a Markov

process, i.e., its future evolution does not depend on its past, because (a) the random force is memory

free and (b) the motion is overdamped.

To apply this concept — replacing fast degrees of freedom by a random force — to our case we

have to be aware of the differences though. First, it is not at all clear how to select the slow degrees of

freedom for the internal motion of a protein. All involved particles, regardless if constituting solvent or

protein, are atoms of similar mass, which move with comparable speeds. Second, there will be no clear

separation between fast and slow degrees of freedom due to the continuous spectrum of time scales

covered by protein dynamics. An important consequence is that the random force contains memory

effects. A third difference is that the motion is not overdamped, such that inertia effects matter. Thus,

our treatment will have to account for this non-Markovian character of the slow dynamics.

The absence of canonical slow degrees of freedom has led to a diversity of phenomenologically

motivated selections of the active space. These include implicit solvent[31], combined atom or bead

models[32, 33, 34, 35], and the treatment of polypeptides as chains of stiff ’platelets’, for which

only ψ-ϕ backbone angles are retained as explicit degrees of freedom[36, 37]. A somewhat related

approach is the gaussian network model[38].

However, by restricting the model to certain atoms or groups of atoms and omitting others, only

a very small subset of all possible collective degrees of freedom is considered. One may, there-

fore, expect to derive improved dimension-reduced descriptions of protein dynamics by dropping

this empirical restriction and considering as degrees of freedom m fully general functions ci =
fi(x1, . . . ,xN ), i = 1 . . . m, of the atomic positions xj . Linear fi are widely considered, e.g.,

within the framework of principal components analysis (PCA)[39], which is often used to system-

atically derive slow and relevant (essential) collective degrees of freedom from MD simulations or

structural ensembles[40]. Here we consider both, linear and non-linear collective degrees of freedom.

The general framework that allows to reduce the full dynamics of all atomic degrees of freedom

to dynamics of the selected (collective) degrees of freedom is provided by the projection-operator

formalism of Zwanzig and Mori[41, 42]. The resulting generalized Langevin equation (GLE)[43, 44,

45, 46, 47, 48] governs non-Markovian dynamics due to its generalized dissipative term, which is a
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convolution of the memory kernel with past velocities. We will show how the GLE is derived from

Newton’s equation of all degrees of freedom by separating the overall motion with the projection-

operator into (a) an ensemble-averaged motion on the free energy surface, governed by the potential

of mean force, and (b) a deviation from these average dynamics.

Combining these two concepts, generalized collective degrees of freedom and dimension reduced

dynamics, we here develop the framework of Collective Langevin Dynamics (CLD), which describes

protein dynamics in collective coordinates. The projection-operator formalism is used to derive the

necessary parameters for the GLE, i.e., an appropriate potential of mean force and memory kernels

from short MD simulations. Thereby, all parameters are systematically obtained from first principles,

which allows to automate parameter extraction. By construction, there are no general parameters

which hold for all proteins, but parameters need to be specifically extracted for the chosen molecular

system and the selected set of collective coordinates. The low number of degrees of freedom will al-

low a computationally efficient generation of trajectories, thereby rendering microseconds timescales

accessible.

The main tasks which need to be addressed in this thesis are (1) identification of suitable confor-

mational coordinates, (2) extraction of memory kernels and (3) construction of a suitable free energy

landscape from MD simulations, and (4) evaluation of CLD accuracy and performance.

Note that it is a huge task to develop CLD to full maturity, such that we here only attempt the first

steps, which we outline below.

(1) Extraction of relevant degrees of freedom

Selection of suitable collective degrees of freedom crucially affects the strength and persistence of

memory effects as well as the resolution of conformational states. Thereby, this choice determines

the significance of the resulting CLD model for functionally relevant dynamics. Thus, we aim for

collective modes which are as slow as possible. Moreover, the active subspace is ideally uncorrelated

to those remaining fast degrees of freedom, which are not treated explicitly.

A well established method to identify functional relevant modes in MD trajectories is principal

component analysis (PCA)[49, 39, 50, 51, 40]. Therefore, it is a natural choice to consider PCA as

a candidate here. It selects those collective degrees of freedom which contribute most to the atomic

motion seen in the trajectory by diagonalizing the covariance matrix of atomic displacements.

Whether and to what extent a separation of timescales can be achieved by application of PCA

has not yet been systematically assessed. Furthermore, it is not clear, and subject to ongoing

discussions[52], whether principal components extracted from short MD simulations can serve to

describe protein dynamics at long time scales sufficiently well. In Chapter 2, we will shortly review

the theory of PCA and address these questions.

Unfortunately, PCA does not yield fully uncorrelated collective modes[50], because the covari-

ance matrix detects only linear correlations. Although the remaining non-linear and multi-coordinate

correlations do not impede using principal components within CLD we might be able to advance the
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method by extracting coordinates that are correlated to a lesser extent.

Therefore, we will introduce in Chapter 3 the (Shannon) mutual information[53], which detects

any correlation. Based on this measure we will develop in Chapter 4 Full Correlation Analysis (FCA),

which extracts maximally uncoupled coordinates by minimizing the mutual information of the con-

figurational ensemble.

That the extraction of collective coordinates relies heavily on correlation triggered the wish to

find an experimental access to this observable. This would allow a direct verification of collective

modes, and possibly an experimental access to collective modes without the requirement of an MD

simulation.

Experiments probe correlations in the motion of atoms in three dimensional space[54, 55, 56], in

contrast to the previously considered correlations between coordinates. In Chapter 3 we will show that

the established method[57, 58] to quantify such correlations suffers from considerable inconsistencies,

and thus misses over 50% of correlations. Since this impedes any meaningful comparison of this

observable with experiments, we propose to apply mutual information also to this problem and define

a generalized correlation coefficient. In this way we avoid not only the inconsistencies of the previous

measure but also detect non-linear correlations.

Having then established a solid grasp of correlations on the simulation side, we will compare these

with experimental data. A recently reported NMR relaxation experiment promised to probe correlated

motions in proteins[59]. Whether the results were really related to correlated motion, however, could

not be tested by experiment alone. Therefore, we address this issue by means of MD simulations in

Chapter 5.

(2) Extraction of Memory Functions

Extraction of memory kernels from MD simulations is still a challenging problem. Despite consider-

able efforts, a generally accepted approach has not yet emerged[60, 61, 62, 63]. Thus, we will study

different memory extraction schemes, and evaluate their performance within the framework of CLD

in Chapter 7.

To our knowledge, all existing algorithms are based on either the Memory equation[62, 64,

65, 66, 67, 68, 61, 69], or on a direct relation of the memory kernel with force autocorrelation

functions[63, 70]. We assess both approaches, which have different merits and flaws in the con-

text of CLD. Because exploiting the Memory equation requires solution of an inverse problem, we

need to study regularization techniques for its stable and robust numerical solution.

(3) Free energy surface

Free energy surfaces of the conformational coordinates can be estimated by molecular dynamics

sampling[71, 72]. More efficient, however, are enhanced sampling techniques[29], for instance, mul-

ticanonical methods (e.g., replica exchange MD (REMD)[73]), smart Monte Carlo (SMC)[74], or

umbrella sampling[75]. These techniques are complementary to CLD, because they yield canonical
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ensembles, but do not yield dynamical information. CLD, on the other hand, yields proper dynamical

information, but relies on already known canonical ensembles.

Due to the abundance of available techniques it was not necessary to treat this topic in detail.

(4) Evaluation of CLD models

Assessment of the quality of the obtained dimension-reduced description is non-trivial in itself.

Clearly, direct comparison of the observed CLD trajectory with explicit (deterministic) MD

simulations is not meaningful, because the underlying GLE governs a stochastic process and because

the dynamics is chaotic. Rather, suitable observables such as averages over many realizations of the

stochastic process, or time averages such as time correlation functions, transport coefficients, or

transition rates should be used[76].

However, one has to take care not to check observables which were used to parameterize the

CLD model, rendering the selection of test-observables a delicate choice. Velocity autocorrelation

functions, for example, are used to extract memory kernels from MD simulation and, thus, do not

represent a rigorous test of CLD. In Chapter 8, we use conformational transition rates as observables,

which are fully unrelated to the input - yet statistically meaningful. They are compared to reference

rates obtained from a long explicit MD simulation. Additionally, we compare positional autocorre-

lation functions as a probe of long time correlations, because these are not resolved by the velocity

autocorrelation functions used as input.



I do not fear computers. I fear the lack of them.

— Isaac Asimov

Chapter 2

Principal Component Analysis

Principal component analysis (PCA) is a well-established technique for reducing dimensionality. Its

applications include data compression, image processing, data visualization, exploratory data analysis,

pattern recognition and time series prediction[77]. In this chapter we elucidate whether PCA can be

applied to extract from short MD simulations slow slow collective degrees of freedom to treat protein

dynamics within the proposed framework of collective Langevin dynamics (CLD).

For analysis of protein dynamics principal component analysis (PCA)[49, 39, 50] is an established

method based on the notion that the biggest positional fluctuations occur along collective degrees of

freedom. This was first realized by normal mode analyses of small proteins[78, 79, 80]. In nor-

mal mode analysis, the potential energy is approximated harmonically and the collective modes are

obtained by diagonalizing the Hessian matrix in a local energy minimum. PCA, and the related quasi-

harmonic analysis[81, 82, 83, 84] and singular value decomposition[85, 86], have shown that even

beyond the harmonic approximation protein dynamics are dominated by few collective modes. In

particular, these methods showed that it was generally possible to describe about 90% of the total

atomic displacement of a protein with only 5-10% of the collective degrees of freedom[50, 87]. This

has led to the concept of the essential subspace, which is spanned by a small number of the PCA

modes with the highest fluctuational amplitudes. It could be shown that in this way PCA separates

protein dynamics in two kinds of modes. The fluctuational distribution of the non-essential (small

amplitude) modes is well approximated by a Gaussian. Thus, these modes are called quasi-harmonic,

and are considered to constitute near constraint degrees of freedoms[88, 89]. For the large ampli-

tude (essential) modes, on the contrary, this approximation is inaccurate, such that they are called

anharmonic[88, 89]. It was argued that only the latter describe functional relevant motion, since the

anharmonicity results from rare transitions between multiple minima, while the motion within the

minima is rather quasi-harmonic[88, 89, 90].

As a consequence, the dynamics in the essential subspace, denoted as essential dynamics, are often

in the primary focus of computational studies[91, 92, 93, 94, 95], enhanced sampling techniques[96,

97, 98] or simple models of protein dynamics[90, 99, 100, 101]. To investigate whether the essential

PCA modes are suitable to serve as conformational coordinates within the CLD framework, we need

13
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to establish that (a) the timescales between essential and non-essential PCA modes must be partially

separated, and (b) the essential modes must describe also the long time dynamics sufficiently well.

Essential PCA modes indeed describe slow motion, because via the equipartition theorem the

large amplitude modes are connected with a slow effective frequency ωeff
i =

√
kT

〈c2i 〉 [87]. However,

the timescale separation needs to be investigated more systematically, because a slow effective fre-

quency does not rule out minor but significant fast contributions to the dynamics of an essential mode.

Therefore, we are going to analyze in Sec. 2.4 the power spectra of all principal modes, in order to

see whether and under which conditions PCA is able to filter out purely slow motions.

Furthermore, we need to establish that the essential subspace obtained from a short MD simula-

tion describes a considerable and sufficient amount of the overall protein motion observed on long

time scales. This question about the convergence of principal modes has led to considerable dispute.

Amadei et al. advocated a fast convergence[102], whereas Balsera et al. strongly questioned the

suitability of principal modes to describe protein dynamics on long time-scales[52]. This controversy

stems from a different perception of convergence of principal components. Amadei et al. found in 2 ns

simulations evidence on a remarkably stability of the directions of single eigenvectors[102]. Balsera’s

rejection of principal modes, however, was mainly based on the slow convergence of the fluctuational

amplitudes[52]. Because these amplitudes are not important for the use of the PCA modes within the

CLD framework, the findings of Amadei et al. are more relevant to us.

Nevertheless, both antagonistic studies are based on short simulations — due to the limited com-

puter power at their time — rendering the judgment of the suitability of principal modes for description

of protein motion on long time scales a precarious extrapolation. Therefore, we resolve this question

by analyzing in Sec. 2.5 how well principal components computed from short MD simulations can

describe the dynamics observed in a much longer (i.e., 450ns) MD simulation of crambin. Besides, we

depart from Amadei’s work not only by means of much longer simulation time, but also by adopting

a new measure of stability (cf. Sec. 2.3.3) that is particular suited to answer our question.

In the subsequent section we introduce PCA as maximization of fluctuational amplitude and report

its basic properties. Since the following investigations are based on extended MD simulation, we

sketch its principles in Sec. 2.2 and use the opportunity to introduce in Sec. 2.3.1 all simulation

systems used within this work.

2.1 Theory of principal component analysis

We shortly review the most common derivation of PCA to illustrates its basic properties. PCA is

applied to ensembles of protein structures
{
r(k)

}
k=1...M

, where r = (r1, r2, . . . , rN )T denotes the

positions of its N atoms in three dimensional space and angular brackets denote the ensemble average

〈f(r)〉 = M−1
∑M

k=1 f
(
r(k)

)
. PCA aims at finding linear orthogonal projections ci = aT

i (r − 〈r〉),
where the ai are unit-vectors, such that the cumulative variances of the projections to the first m

modes, σ2
m =

〈∑m
i=1 c2

i

〉
, are maximized for all m = 1 . . . 3N . The ci are then called principal
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components.

Now we show that the mode vector aT
i corresponds to the normalized eigenvector associated with

the i-th largest eigenvalue of the covariance matrix of atomic displacements,

C = 〈(r−〈r〉) (r−〈r〉)T〉.

Without loss of generality it is assumed that 〈r〉 = 0, i.e., C =
〈
rrT

〉
. First, the variance of

the first principal component c1 is maximized, i.e., m = 1, and, subsequently, the other principal

components are obtained by a simple repetition of the steps with m > 1.

A maximizer a1 of the variance σ2
1 =

〈
aT

1r
(
aT

1r
)T

〉
=

〈
aT

1rr
Ta1

〉
= aT

1

〈
rrT

〉
a1 under the

constraint ‖a1‖2 = 1 must solve the normal equation

0 =
〈
rrT〉

a1 − λa1, (2.1)

which is obtained by differentiation with respect to a1 of the Lagrangian function

Lλ (a1) = aT
1

〈
rrT〉

a1 − λ
(
‖a1‖2 − 1

)
,

where λ denotes a Lagrange multiplier. Eq. (2.1) yields the necessary condition that the maximizer

a1 has to be an eigenvector of the covariance matrix
〈
rrT

〉
corresponding to an eigenvalue λ. More-

over, λ = aT
1

〈
rrT

〉
a1 = σ2

1 , i.e., the maximum variance is given by the largest eigenvalue and its

corresponding eigenvector.

After the first d−1 projection vectors ai have been identified, the subsequent vector aT
m is obtained

by maximizing the cumulative variance σ2
m =

〈∑d
i=1 c2

i

〉
= σ2

m−1 +
〈
aT

mr
(
aT

mr
)T

〉
keeping the

first m− 1 vectors, and thus the variance σ2
m−1, fixed. This yields, repeating the steps above, that aT

m

is the eigenvector of C corresponding to the m-largest eigenvalue.

An illustrative alternative is to define principal components as the projections ci for

which the reproduction error
〈
‖r − r̂m‖2

〉
is minimized. The m-dimensional reproduction

r̂m = AT (c1, c2, . . . , cm, 0, . . . , 0)T, where the rows of A are formed by the vectors aT
i , is the

motion in the original 3N -dimensional space, which can be described using only m degrees of

freedom ci. The minimization of the reproduction error is equivalent to maximization of σ2
m

〈
‖r − r̂m‖2

〉
=

〈
rTr − rTr̂m − r̂T

mr + r̂T
mr̂m

〉
,

which yields with r = AT (c1, c2, . . . , c3N )T due to
〈
rTr̂m

〉
=

〈
r̂T
mr

〉
=

〈
r̂T
mr̂m

〉
=

〈∑m
i=1 c2

i

〉
=

σ2
m that 〈

‖r − r̂m‖2
〉

=
〈
rTr

〉 − σ2
m.

Thus, using PCA the dimension reduced description of the protein dynamics has the smallest repro-

duction error that is possible to achieve with a given number m of collective degrees of freedom.


